[1]赵 群,谢一建,李峥嵘.拉萨民居围护结构热工性能的新型评价参数的建立[J].西安建筑科技大学学报(自然科学版),2021,53(06):876-886.[doi:10.15986/j.1006-7930.2021.06.012 ]
 ZHAO Qun,XIE Yijian,LI Zhengrong.Establishment of new evaluation parameters for thermal performance of Lhasa residential building envelope structure[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):876-886.[doi:10.15986/j.1006-7930.2021.06.012 ]
点击复制

拉萨民居围护结构热工性能的新型评价参数的建立()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年06期
页码:
876-886
栏目:
出版日期:
2021-12-20

文章信息/Info

Title:
Establishment of new evaluation parameters for thermal performance of Lhasa residential building envelope structure
文章编号:
1006-7930(2021)06-0876-11
作者:
赵 群1谢一建2李峥嵘2
(1.同济大学 建筑与城市规划学院,上海 200092; 2.同济大学 机械与能源工程学院,上海 201804)
Author(s):
ZHAO Qun1 XIE Yijian2 LI Zhengrong2
(1.College of Architecture and Urban Planning, Tongji University,Shanghai 200092, China; 2.School of Mechanical Engineering, Tongji University, Shanghai 201804, China)
关键词:
拉萨 围护结构 太阳能热利用 传热蓄热
Keywords:
Lhasa area enclosure structure solar thermal utilization heat transfer and storage
分类号:
TU111.4
DOI:
10.15986/j.1006-7930.2021.06.012
文献标志码:
A
摘要:
拉萨地区冬季寒冷,但太阳能资源丰富,在改善当地冬季室内热环境的技术分析中,减少当地室内热量损失和增强墙体太阳能热利用对围护结构的保温与蓄热性能产生了不同的需求.为平衡这种需求,使得围护结构对室内热环境改善效果达到最佳,对围护结构蓄热与传热性能的相对强弱及其对围护结构室内侧导热量的影响进行研究.首先运用拉普拉斯变换法,得到集墙体厚度、材料导热系数及体积热容为一体的评价围护结构蓄热性能与传热性能相对强弱的RSHST数,然后运用Energyplus模拟分析拉萨地区一定保温性能墙体的不同RSHST值对冬季围护结构内壁面导热量和壁面温度的影响,最后以夜间内壁面平均温度及夜间内壁面单位面积导热量大小为指标,得到当地围护结构RSHST的设计推荐值.
Abstract:
The Lhasa area is cold in winter, but solar energy resources are abundant. In the technical analysis of improving the local indoor thermal environment in winter, reducing the local indoor heat loss and enhancing the wall solar heat utilization have produced different requirements for the insulation and heat storage performance of the envelope structure. In order to balance this demand and make the envelope structure achieve the best improvement effect on the indoor thermal environment, this paper studies the relative strength of the envelope structure's heat storage and heat transfer performance and its influence on the indoor heat conduction of the envelope structure. First, by using the Laplace transform method, the RSHST number of wall thickness, material thermal conductivity and volume heat capacity is obtained to evaluate the relative strength of heat storage performance and heat transfer performance of envelope structure. Then Energy plus simulation is used to analyze the effect of different RSHST values on the thermal conduction and wall temperature of the inner wall of the enclosure structure in Lhasa in winter. Finally, the average temperature of the inner wall at night and the heat conduction per unit area of the inner wall at night are used as indicators to obtain the local enclosure structure RST The design recommendation value.

参考文献/References:

[1] SARKAR A, BOSE S. Exploring impact of opaque building envelope components on thermal and energy performance of houses in lower western Himalayans for optimal selection[J]. Journal of Building Engineering. 2016, 7: 170-182.
[2]VERICHEV K, ZAMORANO M, FUENTES-SEPúLVEDA A, et al. Adaptation and mitigation to climate change of envelope wall thermal insulation of residential buildings in a temperate oceanic climate[J]. Energy and Buildings. 2021, 235: 110719.
[3]OZEL M. Thermal performance and optimum insulation thickness of building walls with different structure materials[J]. Applied Thermal Engineering. 2011, 31(17): 3854-3863.
[4]RAUT A N, GOMEZ C P. Assessment of thermal and energy performance of thermally efficient sustainable wall system for Malaysian low cost housing[J]. Applied Thermal Engineering. 2018, 136: 309-318.
[5]OLIVEIRA R D, SOUZA R V G D, MAIRINK A J M, et al. Concrete walls thermal performance analysis by brazilian standards[J]. Energy Procedia. 2015, 78: 213-218.
[6]闫伦,刘勇. 辽宁既有建筑节能改造技术浅析[J]. 房材与应用(建筑节能). 2006(3): 22-24.
YAN L, LIU Y. Energy saving modification techniques for Liaoning buildings[J]. Building Energy Efficiency. 2006(3): 22-24.
[7]晋文,焦俊军. 建筑围护结构得热量与建筑设计因素关系的研究[J]. 建筑热能通风空调. 2009, 28(2): 77-79.
JIN W,JIAO J J. The research of the relation between building energy consumption and building design factors[J]. Building Energy & Environment. 2009, 28(2): 77-79.
[8]钱坤,丁芳芳. 寒冷地区既有建筑围护结构的节能改造[J]. 四川建材. 2016, 42(4): 11-14.
QIAN Q,DING F F. Energy saving reconstruction of existing building envelope in cold area[J]. Sichuan Building Materials. 2016, 42(4): 11-14.
[9]HOES P, HENSEN J L M. The potential of lightweight low-energy houses with hybrid adaptable thermal storage: Comparing the performance of promising concepts[J]. Energy and Buildings. 2016, 110: 79-93.
[10]VERBEKE S, AUDENAERT A. Thermal inertia in buildings: A review of impacts across climate and building use[J]. Renewable and Sustainable Energy Reviews. 2018, 82: 2300-2318.
[11]GREGORY K, MOGHTADERI B, SUGO H, et al. Effect of thermal mass on the thermal performance of various Australian residential constructions systems[J]. Energy and Buildings. 2008, 40(4): 459-465.
[12]张在喜. 墙体蓄放热特性及其对建筑能耗影响的研究[D]. 重庆:重庆大学, 2014.
ZHANG Z X. Research on wall heat storage performance and its impact on building energy consumption[D]. Chongqing: Chongqing University, 2014.
[13]孙媛媛. 混凝土建筑结构蓄热对室内热环境的影响研究[D]. 大连:大连理工大学, 2008.
SUN Y Y. Study on the effect of heat storage on indoor thermal environment in residences with concrete components[D]. Dalian: Dalian University of Technology, 2008.
[14]陈翠英. 墙体的蓄放热特性对室内热环境调节作用的研究[D]. 大连:大连理工大学, 2006.
CHEN C Y. Study of indoor thermal environment with heat charge and discharge characteristic of massive wall[D]. Dalian: University of Technology, 2006.
[15]朱丽,熊伟丞,王一平,等. 热质墙体在我国的热适应性研究[J]. 建筑科学, 2010, 26(2): 88-93.
ZHU L, XIONG W C, WANG Y P, et al. Research on thermal adaptability of thermal mass wall in China[J]. Building Science,2010, 26(2): 88-93.
[16]王秋明. 拉萨农村民居围护结构保温和蓄热优化研究[D]. 西安:西安建筑科技大学, 2017.
WANG Q.M, The optimization of the insulation and heat storage of rural residential building envelope in lhasa region[D]. Xi'an:Xi'an Univ. of Arch. & Tech., 2017.
[17]侯立强,杨柳,刘大龙,等. 康定传统民居围护结构优化研究[J]. 建筑节能. 2016, 44(3): 43-46.
HOU L Q, YANG L, LIU D L, et al. Envelope optimization of Kangding traditional residential building[J]. Building Energy Efficiency, 2016,44(3): 43-46.
[18]索朗白姆,吴延孝. 拉萨传统民居围护结构热工性能[J]. 住区, 2017(4): 144-147.
SUOLANG B M, WU Y X. The thermal performance of building envelope of traditional house in Lhasa[J]. Design Community, 2017(4): 144-147.
[19]张樱子. 藏族传统居住建筑气候适宜性研究[D]. 西安: 西安建筑科技大学, 2008.
ZHANG Y Z. Study on climate adaptability of tibetan traditional dwellings[D]. Xi'an: Xi'an Univ. of Arch. & Tech., 2008.
[20]何大海. 西藏拉萨地区传统民居气候适应性研究[D]. 重庆: 重庆大学, 2013.
HE D H. Climatic adaptation research of traditional residence in lhasa tibet area[D]. Chongqing: Chongqing University, 2013.
[21]桑国臣. 西藏高原低能耗居住建筑构造体系研究[D]. 西安: 西安建筑科技大学, 2009.
SANG G C. Study on construction system of low energy consumption residential buildings in tibet plateau[D]. Xi'an: Xi'an Univ. of Arch. & Tech., 2009.
[22]朱新荣,杨柳,刘加平,等. 西藏自治区城市围护结构传热系数的修正系数[J]. 清华大学学报(自然科学版), 2008(9): 1381-1384.
ZHU X R, YANG L, LIU J P, et al. Correction factor for heat transfer coefficient of city building envelope in Tibet autonomous region[J]. Journal of Tsinghua University(Science and Technology), 2008(9):1381-1384.
[23]王东. 西藏节能居住建筑围护结构传热系数的修正系数研究[D]. 重庆:重庆大学, 2006.
WANG D. Research on correct factor of envelope K factor for energy efficiency resident building in tibet[D]. Chongqing: Chongqing University, 2006.
[24]ASAN H. Numerical computation of time lags and decrement factors for different building materials[J]. Building and Environment. 2006, 41(5): 615-620.
[25]ULGEN K. Experimental and theoretical investigation of effects of wall's thermophysical properties on time lag and decrement factor[J]. Energy and Buildings. 2002, 34(3): 273-278.
[26]BALARAS C A. The role of thermal mass on the cooling load of buildings. An overview of computational methods[J]. Energy and Buildings. 1996, 24(1): 1-10.
[27]ASTE N, ANGELOTTI A, BUZZETTI M. The influence of the external walls thermal inertia on the energy performance of well insulated buildings[J]. Energy and Buildings. 2009, 41(11): 1181-1187.
[28]ZHANG Y, LIN K, ZHANG Q, et al. Ideal thermophysical properties for free-cooling(or heating)buildings with constant thermal physical property material[J]. Energy and Buildings. 2006, 38(10): 1164-1170.
[29]郭超月,赵蕾,杨柳. 基于人体热适应需求的居住建筑外墙热工设计方法及关键参数研究[J]. 暖通空调, 2018, 48(1): 113-117.
GUO C Y, ZHAO L,YANG L. Thermal design method and key parameters of residential building envelopes based on human thermal adaptation demand[J]. Heating Ventilating & Air Conditioning, 2018, 48(1): 113-117.
[30]章熙民. 传热学[M].第5版. 北京:中国建筑工业出版社,2007.
ZHANG X M. Heat transfer[M]. 5th ed.Beijing: China Architecture & Building Press, 2007.
[31]陈友明,王盛卫. 建筑围护结构非稳定传热分析新方法[M]. 北京: 科学出版社, 2004: 323.
CHEN Y P, WANG S W. A new method for analysis of unsteady heat transfer of building envelope[M].Beijing: Science Press, 2004: 323.
[32]陶文铨. 传热学[M]. 第4版.北京:高等教育出版社,2006.
TAO W Q. Heat transfer[M]. 4th ed.Beijing: Higher Education Press, 2006.
[33]马庆芳. 实用热物理性质手册[M].北京:农业机械出版社,1986
MA Q F. Manual of practical thermophysical properties[M]. Beijing: China Agricultural Machinery Press, 1986: 1110.

相似文献/References:

[1]邢永杰,单 明,毛春柳,等.北京市既有农宅规模化节能改造实施方案及效果研究[J].西安建筑科技大学学报(自然科学版),2020,52(04):547.[doi:10.15986-j.1006-7930.2020.04.012]
 XING Yongjie,SHAN Ming,MAO Chunliu,et al.Study on implementation schemes and their effects on the large-scale energy saving renovations of existing rural buildings in Beijing[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):547.[doi:10.15986-j.1006-7930.2020.04.012]

备注/Memo

备注/Memo:
收稿日期:2021-07-11修改稿日期:2021-11-10
基金项目:“十三五”国家重点研发计划课题项目(2017YFC0702400)
第一作者:赵 群(1975-),女,副教授,主要从事被动式建筑技术设计研究.E-mail: qunzhao@126.com 通信作者:谢一建(1993-),男,硕士生,主要从事围护结构热工性能研究.E-mail: xie_1jian@126.com

更新日期/Last Update: 2021-12-20