[1]马逸敏,马宏伟,翁益显,等.中心支撑-钢框架高层公寓的结构分析及优化研究[J].西安建筑科技大学学报(自然科学版),2022,54(04):606-616.[doi:10.15986/j.1006-7930.2022.04.016]
 MA Yimin,MA Hongwei,WENG Yixian,et al.Structural analysis and optimization of high-rise apartments with concentrically braced steel frame[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(04):606-616.[doi:10.15986/j.1006-7930.2022.04.016]
点击复制

中心支撑-钢框架高层公寓的结构分析及优化研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年04期
页码:
606-616
栏目:
出版日期:
2022-08-28

文章信息/Info

Title:
Structural analysis and optimization of high-rise apartments with concentrically braced steel frame
文章编号:
1006-7930(2022)04-0606-11
作者:
马逸敏马宏伟翁益显杨致远
(华南理工大学 土木与交通学院,广东 广州 510641)
Author(s):
MA Yimin MA Hongwei WENG Yixian YANG Zhiyuan
(School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China)
关键词:
中心支撑钢框架 剪力分配 变形协调 结构优化 理论计算
Keywords:
concentrically braced steel frame shear force distribution deformation compatibility structural optimization theoretical calculation
分类号:
TU391
DOI:
10.15986/j.1006-7930.2022.04.016
文献标志码:
A
摘要:
中心支撑-钢框架(CBF)结构作为双重抗侧力体系常用于高层建筑,水平荷载计算时涉及剪力在两种抗侧力体系间的分配,目前,简化的理论计算方法有按支撑体系与框架体系间的抗侧刚度比值或者按照两种体系的变形协调来分配总剪力.对于高层建筑,尤其是对于长条形、立面有收缩的公寓建筑,理论计算方法存在偏差,需要对两种理论计算方法的适用性进行评价.同时,长条形建筑的长宽比大,沿建筑长边的框架榀数较多,与常规CBF结构相比,框架体系分担的剪力较大,从受力角度出发,可通过将梁柱节点设为铰接,释放柱端弯矩,减小框架体系受到的剪力,从而改变剪力在支撑体系与框架体系之间的分配比例,实现减小框架柱截面尺寸和减少用钢量.该优化方法通过改变受力体系的内力实现减重,值得重视.对某12层长条形高层公寓分析结果表明:对于长条形、立面有收缩的公寓建筑,基于变形协调的理论计算方法得到的剪力在两种抗侧力体系间的分配与电算接近,误差最大为负13.9%; 而基于刚度比的方法与电算相差较大.对框架体系的部分梁柱节点设置为铰接后,支撑与框架体系受到的剪力占底部总剪力的比例分别增大4%和减小4%,当减小框架体系柱截面,并保持结构的周期比、最大层间位移角、最大应力比不变,结构的单位用钢量可以减少4.7%.
Abstract:
Concentrically braced steel frame(CBF)structure is often used in high-rise buildings as a dual lateral force resistance system. The horizontal load calculation involves the distribution of shear force between the two lateral force resistance systems, and at present, the simplified theoretical calculation methods of the distribution of total shear force are based on the ratio of the lateral rigidity of the bracing system and frame system, or the deformation compatibility of the two systems. For high-rise buildings, especially for long-striped apartment buildings with shrinking body shape, there are deviations in the theoretical calculation methods, and the applicability of the two theoretical calculation methods needs to be evaluated. Meanwhile, the length-to-width ratio of the long-striped building is large, and there are many frames along the long side of the building. Compared with the conventional CBF structure, the frame system shares a larger shear force. From the point of view of force distribution, the beam-column joint can be set as hinged, so that the bending moment at the column ends can be released, and the shear force shared by the frame system can be reduced. Therefore, the distribution ratio of the shear force between the bracing system and frame system can be changed to reduce the frame column cross section size and steel consumption. This optimization method achieves weight reduction by changing the internal force of the force-bearing system, which is worthy of attention. The analysis results of a 12-story long-striped high-rise apartment show that: for a long-striped apartment building with shrinking body shape, the distribution of shear force between the two lateral force resistance systems achieved by the theoretical calculation method based on the deformation compatibility is close to that achieved by the software, and the maximum error is minus 13.9%, while the results achieved by the theoretical calculation method based on rigidity ratio is quite different from that achieved by the software. After some of the beam-column joints of the frame system are set to be hinged, the ratio of the shear force shared by the bracing system and the frame system to the total base shear force increases by 4% and decreases by 4%, respectively. When the column cross section of the frame system is reduced and the period ratio, the maximum story drift ratio and the maximum stress ratio of the structure are kept unchanged, the unit steel consumption of the structure can be reduced by 4.7%.

参考文献/References:

[1]American Institute of Steel Construction. Seismic provisions for structural steel buildings: ANSI/AISC 341-16[S]. Chicago: American Institute of Steel Construction, 2016.
[2]张文元, 李鸿维, 曾立静, 等. 中心支撑-钢框架结构抗震性能和设计方法综述[J]. 哈尔滨工业大学学报, 2021, 53(4): 1-9.
ZHANG Wenyuan, LI Hongwei, ZENG Lijing, et al. Review of seismic performance and design methods of steel concentrically braced frames[J]. Journal of Harbin Institute of Technology, 2021, 53(4): 1-9.
[3]GOEL S C, El-Tayem A A. Cyclic load behavior of angle-X-bracing[J]. Journal of Structural Engineering, 1986, 112(11): 21063.
[4]中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for seismic design of buildings: GB 50011—2010[S]. Beijing: China Architecture & Building Press, 2010.
[5]中华人民共和国住房和城乡建设部. 高层民用建筑钢结构技术规程: JGJ 99—2015[S]. 北京: 中国建筑工业出版社, 2016.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for steel structure of tall building: JGJ 99—2015[S]. Beijing: China Architecture & Building Press, 2016.
[6]但泽义. 钢结构设计手册[M]. 北京: 中国建筑工业出版社, 2019.
DAN Zeyi. Manual of steel structure design[M]. Beijing: China Architecture & Building Press, 2019.
[7]张爱林, 林海鹏, 张艳霞, 等. 重力-抗侧力可分钢框架体系受力性能分析[J]. 建筑钢结构进展, 2020, 22(3): 37-47.
ZHANG Ailin, LIN Haipeng, ZHANG Yanxia, et al. Mechanical performance analysis of a separable gravity-lateral resistant steel frame system[J]. Progress in Steel Building Structures, 2020, 22(3): 37-47.
[8]叶列平, 程光煜, 曲哲, 等. 基于能量抗震设计方法研究及其在钢支撑框架结构中的应用[J]. 建筑结构学报, 2012, 33(11): 36-45.
YE Lieping, CHENG Guangyu, QU Zhe, et al. Study on energy-based seismic design method and application on steel braced frame structures[J]. Journal of Building Structures, 2012, 33(11): 36-45.
[9]ZENG L J, ZHANG W Y, DING Y K. Representative strain-based fatigue and fracture evaluation of I-shaped steel bracing members using the fiber model[J]. Journal of Constructional Steel Research, 2019, 160: 476-489.
[10]WIJESUNDARA K K, NASCIMBENE R, SULLIVAN T J. Equivalent viscous damping for steel concentrically braced frame structures[J]. Bulletin of Earthquake Engineering, 2011, 9(5): 1535-1558.
[11]SANTAGATI S, BOLOGNINI D, NASCIMBENE R. Strain life analysis at low-cycle fatigue on concentrically braced steel structures with RHS shape braces[J]. Journal of Earthquake Engineering, 2012, 16: 107-137.
[12]陆铁坚, 余志武. 带支撑多层钢框架结构的内力和位移计算[J]. 长沙铁道学院学报, 2002, 20(3): 7-11.
LU Tiejian, YU Zhiwu. Calculation of internal force and displacement of braced multi-storey steel frame[J]. Journal of Changsha Railway University, 2002, 20(3): 7-11.
[13]郑廷银, 赵惠麟. 高层建筑支撑钢框架结构二阶位移的实用计算[J]. 东南大学学报(自然科学版), 2000, 30(4): 43-47.
ZHENG Tingyin, ZHAO Huilin. A practical approach for second order displacements of braced steel frames in tall buildings[J]. Journal of Southeast University(Natural Science Edition), 2000, 30(4): 43-47.
[14]方鄂华. 多层及高层建筑结构设计[M]. 北京: 地震出版社, 1995.
FANG Ehua. Structural design of multistory and high-rise buildings[M]. Beijing: Seismological Press, 1995.
[15]中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2017.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of steel structures: GB 50017—2017[S]. Beijing: China Architecture & Building Press, 2017.

相似文献/References:

[1]张文元,叶 馨,赵增阳.特殊中心支撑钢框架非耗能构件抗震承载力需求研究[J].西安建筑科技大学学报(自然科学版),2022,54(04):482.[doi:10.15986/j.1006-7930.2022.04.002]
 ZHANG Wenyuan,YE Xin,ZHAO Zengyang.Study on seismic capacity demands of non-dissipative members in special concentrically braced frames[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(04):482.[doi:10.15986/j.1006-7930.2022.04.002]

备注/Memo

备注/Memo:
收稿日期:2022-07-08修改稿日期:2022-08-12
基金项目:亚热带建筑科学国家重点实验室开放课题(2018ZB29)
第一作者:马逸敏(1998—),女,硕士生,主要从事结构分析相关研究.E-mail:3177969651@qq.com. 通讯作者:马宏伟(1973—),男,博士,副教授,主要从事钢结构和组合结构研究.E-mail:hwma@scut.edu.cn
更新日期/Last Update: 2022-08-28