[1]Applied Technology Council. Quantification of building seismic performance factors: FEMA P695[S]. Redwood City, CA: Applied Technology Council, 2009: 1-15.
[2]IBARRA L F, KRAWINKLER H. Global collapse of frame structures under seismic excitations[R]. CA:Pacific Earthquake Engineering Research Center, 2005.
[3]HASELTON C B, LIEL A B, DEIERLEIN G G, et al. Seismic collapse safety of reinforced concrete buildings. I: Assessment of ductile moment frames[J]. Journal of Structural Engineering, 2010, 137(4): 481-491.
[4]MAKHDOOM O, AZIMINEJAD A, ZARFAM P, et al. Effect of the asymmetry level on collapse margin of torsionally stiff single-story buildings based on FEMA P695 methodology[J]. Structures, 2022, 37: 1042-1052.
[5]ZHANG Y T, HE Z. Acceptable values of collapse margin ratio with different confidence levels [J]. Structural Safety, 2020, 84: 101938.
[6]HARDYNIEC A, CHARNEY F. A new efficient method for determining the collapse margin ratio using parallel computing [J]. Computers and Structures, 2015, 148: 14-25.
[7]陆新征, 叶列平. 基于IDA分析的结构抗地震倒塌能力研究[J]. 工程抗震与加固改造, 2010, 32(1): 13-18.
LU Xinzheng, YE Lieping. Study on the seismic collapse resistance of structural system [J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(1): 13-18.
[8]施炜, 叶列平, 陆新征, 等. 不同抗震设防RC框架结构抗倒塌能力研究[J]. 工程力学, 2011, 28(3): 41-48.
SHI Wei, YE Lieping, LU Xinzheng, et al. Study on the collapseresistant capacity of RC frames with different seismic fortification levels[J]. Engineering Mechanics, 2011, 28(3): 41-48.
[9]王涛. 混凝土框架结构在强震作用下的抗倒塌能力研究[D]. 重庆: 重庆大学, 2013.
WANG Tao. Study on collapse resistance of RC frame structures under strong ground motions[D]. Chongqing: Chongqing University, 2013.
[10]李刚. 多层钢框架倒塌储备能力分析[D]. 苏州:苏州科技学院, 2011.
LI Gang. Analysis on the seismic collapse margin of multistory steel frames[D]. Suzhou: Suzhou University of Science and Technology, 2011.
[11]彭成, 何若全, 冯进. 基于不同超强和延性下钢框架的抗倒塌储备系数[J]. 苏州科技学院学报(工程技术版), 2012, 25(2): 36-41.
PENG Cheng, HE Ruoquan, FENG Jin. Collapse margin ratios of steel frames based on different overstrength and ductility[J]. Journal of University of Science and Technology of Suzhou (Engineering and Technology), 2012, 25(2): 36-41.
[12]朱磊, 何若全, 冯进. 柱翼缘宽厚比对钢框架倒塌储备能力的影响[J]. 钢结构, 2013, 28(8): 10-14.
ZHU Lei, HE Ruoquan, FENG Jin. Influence of the column flange widththickness ratio on seismic collapse margin of steel frames[J]. Steel Construction, 2013, 28(8): 10-14.
[13]何鹏飞, 赵宝成. X 形中心支撑钢框架倒塌储备能力研究[J]. 苏州科技学院学报(工程技术版), 2014, 27(2): 67-71.
HE Pengfei, ZHAO Baocheng. A study on the seismic collapse margin capacity of Xconcentrically braced steel frames[J]. Journal of University of Science and Technology of Suzhou (Engineering and Technology), 2014, 27(2): 67-71.
[14]杨文侠, 孙国华, 顾强, 等. Y形偏心支撑钢框架结构的抗倒塌性能评估[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(6): 829-839.
YANG Wenxia, SUN Guohua, GU Qiang, et al. Collapseresisting evaluation of Yeccentric braced steel frames under severe earthquake[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2020, 52(6): 829-839.
[15]单文臣, 周绪红, 林旭川, 等. CFT框架-RC剪力墙结构基于一致倒塌风险的抗震设计研究 [J]. 土木工程学报, 2022, 55(8): 26-34.
SHAN Wenchen, ZHOU Xuhong, LIN Xuchuan, et al. Research on uniform collapse riskbased seismic design of CFT frame-RC shear wall structures[J]. China Civil Engineering Journal, 2022, 55(8): 26-34.
[16]LIEL A B, HASELTON C B, DEIERLEIN G G. Seismic collapse safety of reinforced concrete buildings. II: Comparative assessment of nonductile and ductile moment frames[J]. Journal of Structural Engineering, 2010, 137(4): 492-502.
[17]FARAHBAKHSHTOOLI A, BHOWMICK A K. Seismic collapse assessment of stiffened steel plate shear walls using FEMA P695 methodology[J]. Engineering Structures, 2019, 200: 109714.
[18]KASSEM M M, NAZRI F M, FARSANGI E N. On the quantification of collapse margin of a retrofitted university building in Beirut using a probabilistic approach[J]. Engineering Science and Technology, an International Journal, 2020, 23: 373-381.
[19]孙国华, 顾强, 方有珍, 等. 半刚接钢框架内填暗竖缝RC墙结构基于性态的地震易损性分析[J]. 振动工程学报, 2016, 29(3): 410-419.
SUN Guohua, GU Qiang, FANG Youzhen, et al. Performance -based seismic fragility analysis of partially-restrained steel frame with concealed vertical slit RC infill walls[J]. Journal of Vibration Engineering, 2016, 29(3): 410-419.
[20]童申家, 黄勇, 李红涛, 等. 除冰盐环境下在役RC桥墩时效地震易损性研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(3): 315-320.
TONG Shenjia, HUANG Yong, LI Hongtao, et al. Study on aging seismic vulnerability of inservice RC bridge piers in deicing salt environment[J]. J. Xi′an Univ. of Arch. & Tech. (Natural Science Edition), 2020, 52(3): 315-320.
[21]李坤明. 半刚接钢框架内填RC墙结构的性态指标及地震易损性分析[D]. 苏州:苏州科技大学, 2016.
LI Kunming. Performance index and seismic fragility analysis of partially-restrained steel frame with RC infill wall structural system[J]. Suzhou: Suzhou University of Science and Technology, 2016.
[22]SUN G H, YANG C S, GU Q, et al. An effective simplified model of composite compression struts for partiallyrestrained steel frame with reinforced concrete infill wall[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(2): 403-415.
[23]李坤明, 陆承铎, 孙国华. 半刚接钢框架内填RC墙结构的性态指标[J]. 建筑结构, 2019, 49(2): 118-122.
LI Kunming, LU Chengdu, SUN Guohua. Performance objective of partially-restrained steel frame with RC infill wall[J]. Building Structure, 2019, 49(2):118-122.