[1]肖国锋,何娜萍,盖世博,等.基于ERA5数据生成阳江近海室外空气计算参数[J].西安建筑科技大学学报(自然科学版),2023,55(06):912-918.[doi:10.15986/j.1006-7930.2023.06.015]
 XIAO Guofeng,HE Naping,GAI Shibo,et al.Generating Yangjiang offshore outdoor air calculation parameters based on ERA5 data[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(06):912-918.[doi:10.15986/j.1006-7930.2023.06.015]
点击复制

基于ERA5数据生成阳江近海室外空气计算参数()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年06期
页码:
912-918
栏目:
出版日期:
2023-12-28

文章信息/Info

Title:
Generating Yangjiang offshore outdoor air calculation parameters based on ERA5 data
文章编号:
1006-7930(2023)06-0912-07
作者:
肖国锋1何娜萍1盖世博2尹凯丽2谢静超2
(1.中国能源建设集团广东省电力设计研究院有限公司,广州 广东 510799;2.北京工业大学 绿色建筑环境与节能技术北京市重点实验室,北京 100124)
Author(s):
XIAO Guofeng1HE Naping1GAI Shibo2YIN Kaili2XIE Jingchao2
(1.China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangdong 510799, China; 2.Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China)
关键词:
ERA5数据室外空气计算参数海域设备选型
Keywords:
ERA5 data outdoor air calculation parameters sea area equipment selection
分类号:
TU111
DOI:
10.15986/j.1006-7930.2023.06.015
文献标志码:
A
摘要:
现行GB50736—2012《民用建筑供暖通风与空气调节设计规范》缺少海域室外空气计算参数.基于1985—2014年ERA5数据生成阳江近海室外空气计算参数.首先以中国气象局提供的阳江地面实测数据为基准,通过偏差分析验证了基于ERA5数据生成室外空气计算参数是可行的.然后基于ERA5数据生成沿阳江陆地(21.9°N,111.96°E)减小六次0.25°纬度的海域室外空气计算参数,包括夏季空气调节室外计算干球温度、湿球温度、日平均温度,冬季空气调节室外计算温度、相对湿度,夏季通风室外计算温度、相对湿度,冬季通风室外计算温度.由阳江陆地(21.9°N,111.96°E)至海域(20.4°N,111.96°E),夏季空气调节室外计算干球温度降低了36℃,冬季空气调节室外计算干球温度升高了7℃,夏季通风室外计算相对湿度升高了12.5%.如果海域选用就近陆地城市的室外空气计算参数,将影响设备选型.
Abstract:
The GB50736—2012 “Design code for heating ventilation and air conditioning of civil buildings” lacks the outdoor design conditions in sea areas. This paper generates outdoor design conditions for Yangjiang offshore based on ERA5 data from 1985—2014. Firstly, based on the ground measured data of Yangjiang provided by the China Meteorological Administration, the deviation analysis verified that it is feasible to generate outdoor design conditions based on ERA5 data. Then, based on the ERA5 data, the outdoor air calculation parameters for the sea area with six 0.25° latitude decreases along the Yangjiang land (21.9°N, 111.96°E) were generated, including the outdoor design dry-bulb temperature, wet-bulb temperature and mean daily temperature for summer air conditioning, outdoor design temperature and relative humidity for winter air conditioning, outdoor design temperature and relative humidity for summer ventilation, and outdoor design temperature for winter ventilation. From Yangjiang land (21.9°N,111.96°E) to the sea (20.4°N,111.96°E), the outdoor design dry-bulb temperature for summer air conditioning decreases by 3.6℃, and the outdoor design dry-bulb temperature for winter air conditioning increases by 7℃, and the outdoor design relative humidity for summer ventilation increases by 12.5%. If the sea area selects the outdoor design conditions of the nearby land city, it will affect the equipment selection.

参考文献/References:

[1]PAPADIS E, TSATSARONIS G. Challenges in the decarbonization of the energy sector[J]. Energy, 2020, 205:118025.

[2]MENG YQ, YAN SH, WU K, et al. Comparative economic analysis of low frequency AC transmission system for the integration of large offshore wind farms[J]. Renewable Energy, 2021, 179: 1955-1968.
[3]杨柳, 齐静妍, 霍旭杰, 等. 气候变化对室外设计条件和冷负荷峰值的影响[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(4): 463-471,524.
 YANG Liu, QI Jingyan, HUO Xujie, et al. Impact of climate change outdoor design conditions and reduction in peak cooling loads[J]. J. of Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2021, 53(4): 463-471,524.
[4]曾婷婷, 王玉娇, 刘鸣, 等. 基于不同室外气候条件下蒸发冷却空调系统的性能分析[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(6): 921-926,946.
 ZENG Tingting, WANG YUjiao, LIU Ming, et al. Performance analysis of evaporative cooling air-conditioning system under different outdoor climate conditions[J]. J. of Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2021, 53(6): 921-926,946.
[5]HAN O, LI AG, DONG XW, et al. Determination of HVAC meteorological parameters for floating nuclear power stations (FNPSs) in the area of China sea and its vicinity[J]. Energy, 2021, 233: 121084.
[6]杨柳, 刘衍, 端木琳, 等. 建筑节能设计基础参数的研究进展[J].建筑科学, 2021, 37(6): 155-163,205.
 YANG L,LIU Y, DUANMU L, et al. Research progress on the fundamental parameters for building energy efficiency design in China[J]. Building Science, 2021, 37(6): 155-163,205.
[7]崔莹, 燕达, 任兆成, 等. 室外空气计算参数统计方法的研究及更新[J]. 暖通空调, 2016, 46(7): 47-53.
 CUI Ying, YAN Da, REN Zhaocheng, et al. Research and update on statistical method of outdoor air design parameters[J]. Heating Ventilating & Air Conditioning, 2016, 46(7): 47-53.
[8]刘艳峰, 杨黎黎, 王登甲. 间歇采暖室外计算温度取值方法讨论[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(4): 536-541.
 LIU Yanfeng, YANG Lili, WANG Dengjia. The discussion of value methods used in the outdoor calculated temperature of intermittent heating[J]. J. of Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2017, 49(4): 536-541.
[9]刘艳峰, 吴美玲, 王莹莹, 等. 基于二元超阈值模型的空调室外计算干湿球温度确定方法研究[J].西安建筑科技大学学报(自然科学版), 2019, 51(6): 890-898.
 LIU Yanfeng, WU Meiling, WANG Yingying, et al. Study on the determination method of the outdoor design dry-bulb and wet-bulb temperature for air conditioning based on binary super-threshold model[J]. J. of Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2019, 51(6):890-898.
[10]吴仕海, 陈友明, 方政诚, 等. 空调设计用同时发生室外气象参数生成模型优化[J].建筑科学, 2020, 36(10): 1-11.
 WU Shihai, CHEN Youming, FANG Zhengcheng, et al. Model optimization of coincident meteorological parameters for risk-based air-conditioning design[J]. Building Science, 2020, 36(10): 1-11.
[11]周敏,杨若溪,王晶轩.气象参数统计年限更新与多不保证率扩充在暖通设计中的应用研究[J].建筑节能(中英文), 2021, 49(11): 91-95.
 ZHOU Min, YANG Ruoxi, WANG Jingxuan. Application ofupdated statistical years of meteorological parameters and expanded multi-non-assurance rate in HVAC design[J]. Building Energy Efficiency, 2021, 49(11): 9195.
[12]CAO JF, LI MC, WANG M, et al. Effects of climate change on outdoor meteorological parameters for building energy-saving design in the different climate zones of China[J]. Energy and Buildings, 2017, 146: 65-72.
[13]中国海洋石油总公司. 海上平台采暖通风空调冷库系统设计方法:Q/HS 3008—2016[S].北京:石油工业出版社出版, 2017.
 China National Offshore Oil Corporation. Method of design for heating, ventilation, airconditioning and refrigerating on the offshore platforms: Q/HS 3008—2016[S]. Beijing: Petroleum Industry Press, 2017.
[14]ASHRAE. ANSI/ASHRAE Standard 26-2010. Mechanical refrigeration and airconditioning installations aboard ship[S]. Atlanta: American Society of Heating, Refrigerating, and Air Conditioning Engineers Inc, 2010.
[15]中华人民共和国住房和城乡建设部. 民用建筑供暖通风与空气调节设计规范:GB50736—2012[S]. 北京: 中国建筑工业出版社, 2012.
 Ministry of Housing and Urban-Rural Development of the People′s Republic of China, Design code for heating ventilation and air conditioning of civil buildings: GB50736—2012[S]. Beijing: China Architecture & Building Press, 2012.
[16]崔亚平, 谢静超, 张晓静, 等. 中国海陆气候差异性及海域建筑气候区划现状[J]. 哈尔滨工业大学学报, 2018, 50(2): 191-198.
 CUI Yaping, XIE Jingchao, ZHANG Xiaojing, et al. Sealand climate differences and ocean building climate partition situation in our country[J]. Journal of Harbin Institute of Technology, 2018, 50(2): 191-198.
[17]HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049.
[18]宋亚娟, 宋振亚, 秦渭华, 等. 三种再分析气温数据在浙江周边岛屿的适用性评估[J]. 海洋科学进展, 2018, 36(4): 13.
 SONG Yajuan, SONG Zhenya, QIN Weihua, et al. Evaluation of surface air temperature in three reanalysis datasets on islands adjacent to Zhejiang[J]. Advances in Marine Science, 2018, 36(4): 13.
[19]中国气象局气象信息中心气象资料室,清华大学建筑技术科学系. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005.
 Meteorological Data Room of Meteorological Information Center of China Meteorological Administration, Department of Building Technology Science, Tsinghua University. Special meteorological data set for analysis of thermal environment of buildings in China[M]. Beijing: China Building Industry Press, 2005.
[20]ASHRAE. ASHRAE handbook of fundamentals[M]. Atlanta, GA: American Society of Heating, Refrigeration and Air-conditioning Engineers, 1997.
[21]CORD AF, KLEIN D, MORA F, et al. Comparing the suitability of classified land cover data and remote sensing variables for modeling distribution patterns of plants[J]. Ecological Modelling, 2014, 272: 129-140.
[22]JAMIESON PD, PORTER JR, WILSON DR. A test of the computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand[J]. Field Crops Research, 1991, 27(4): 337-350.
[23]周杰, 刘晓冉, 朱浩楠, 等. 气候变化对重庆地区建筑节能设计气象参数的影响[J]. 气象与环境科学, 2020, 43(4): 88-96.
 ZHOU Jie, LIU Xiaoran, ZHU Haonan, et al. Effect of Climate Change on Meteorological Parameters for the Building Energy-Saving Design in Chongqing[J]. Meteorological and Environmental Sciences, 2020, 43(4): 88-96.

备注/Memo

备注/Memo:
收稿日期:2022-10-17修回日期:2023-11-27
基金项目:海上电力平台环控系统研究基金资助项目(EV06721W);国家自然科学基金重点项目(51838011)
第一作者:肖国锋(1981—),男,硕士,高级工程师,主要从事电力工程暖通设计,E-mail:xiaoguofeng@gedi.com.cn
通信作者:盖世博(1994—),男,博士生,主要从事建筑节能方面的研究,E-mail:604885147@qq.com
更新日期/Last Update: 2024-02-01