[1]苏玲,王登甲,董斌彦,等.地面局部辐射供暖典型热环境特征化表征研究[J].西安建筑科技大学学报(自然科学版),2024,56(01):141-149.[doi:10.15986/j.1006-7930.2024.01.017]
 SU Ling,WANG Dengjia,DONG Binyan,et al.Study on characterization of typical thermal environment for ground local radiant heating[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(01):141-149.[doi:10.15986/j.1006-7930.2024.01.017]
点击复制

地面局部辐射供暖典型热环境特征化表征研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年01期
页码:
141-149
栏目:
出版日期:
2024-02-28

文章信息/Info

Title:
Study on characterization of typical thermal environment for ground local radiant heating
文章编号:
1006-7930(2024)01-0141-09
作者:
苏玲2 王登甲12董斌彦2王天慧2
(1.西安建筑科技大学 西部绿色建筑国家重点实验室,陕西 西安 710055;2.西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710055)
Author(s):
SU Ling2 WANG Dengjia12 DONG Binyan2 WANG Tianhui2
(1.State Key Laboratory of Green Building in Western China, Xi′an 710055, China;2.School of Building Services Science and Engineering, Xi′an Univ. of Arch.& Tech., Xi′an 710055, China)
关键词:
地面局部辐射供暖非均匀热环境数值模拟
Keywords:
local floor radiant heating non-uniform thermal environment numerical simulation
分类号:
TU83
DOI:
10.15986/j.1006-7930.2024.01.017
文献标志码:
A
摘要:
局部精细化采暖是满足室内人员舒适前提下降低采暖能耗、实现采暖能源高效利用的重要方式之一.为提高采暖效率,给精细化辐射供暖提供方法参考,本文选取具有显著工位布局要求的办公场所作为对象,对地面局部辐射供暖模块影响下,室内不同区域热环境分布情况进行典型化研究分析,得到了不同局部模块供暖工况下室内非均匀热环境分布特征.分析结果表明,局部辐射面积为16.7%时辐射区域与非辐射区域平均辐射温度相差3 ℃以上,具有明显的局部环境营造效果;地面局部辐射供暖辐射区域与非辐射区域不对称辐射温度差异显著;将局部辐射源设置在靠近外墙区域,可以提高整体平均辐射温度,使室内平均辐射温度分布更为均匀.本研究初步给出基于地面局部辐射供暖的典型化热环境共性特征表述,可为后续局部辐射供暖系统的精细化设计提供参考.
Abstract:
Local fine heating is one of the important ways to reduce heating energy consumption and realize efficient utilization of heating energy under the premise of satisfying the comfort of indoor personnel. In order to improve heating efficiency and provide a method reference for refined radiation heating, the office space with significant station layout requirements is selected as the object in this study to conduct typical research and analysis on the distribution of thermal environment in different indoor areas under the influence of ground local radiation heating modules, and the distribution characteristics of indoor non-uniform thermal environment under different local module heating conditions are obtained. The analysis results show that when the local radiation area is 16.7%, the average radiation temperature difference between the radiation area and the nonradiation area is more than 3 ℃, which has obvious local environment construction effect. There is a significant difference in the asymmetric radiation temperature between the radiation area and the nonradiation area of the ground local radiation heating. Setting the local radiation source near the outer wall area can increase the overall average radiation temperature and make the indoor average radiation temperature distribution more uniform. This study gives a preliminary description of the common characteristics of typical thermal environment based on ground local radiant heating, which can provide a reference for the fine design of subsequent local radiant heating systems.

参考文献/References:

[1]侯恩哲.《中国建筑节能年度发展研究报告 2022》发布[J].建筑节能,2022,50(4):146.
HOU Enzhe. “China building energy efficiency annual development research report 2022” released [J]. Journal of Energy Conservation in Buildings, 2002, 50(4): 146.
[2]中华人民共和国住房和城乡建设部.辐射供暖供冷技术章程:JGJ 142—2012[S]. 北京:中国建筑工业出版社,2012.
Ministry of Housing and UrbanRural Development of the People′s Republic of China. Technical Regulation of Radiant Heating and Cooling: JGJ 142—2012[S]. Beijing: China Architecture and Construction Press, 2012.
[3]MCNALL P E, BIDDISON R E. Thermal and comfort sensations of sedentary persons exposed to asymmetric radiant fields[J]. ASHRAE Transactions. 1970, 76(1): 123-136.
[4]Bojic' M, Cvetkovic' D, Marjanovic' V, et al. Performances of low temperature radiant heating systems[J]. Energy and Buildings, 2013, (61): 233-238.
[5]MYHREN J A, HOLMBERG S. Flow patterns and thermal comfort in a room with panel, floor and wall heating[J]. Energy and Builings, 2008, 40(4): 524-536.
[6]KOCA A, GEMICI Z, TOPACOGLU Y, et al. Experimental investigation of heat transfer coefficients between hydronic radiant heated wall and room[J]. Energy and Buildings, 2014, 82(1): 211-221.
[7]HOLMBERG S, CHEN Q. Air flow and particle control with different ventilation systems in a classroom. [J]. Indoor Air (Print), 2003, 13(2): 200-204.
[8]MYHREN Jonn Are, HOLMBERG Sture. Flow patterns and thermal comfort in a room with panel, floor and wall heating[J]. Energy and Buildings, 2008, 40(4): 524-536.
[9]张东亮,王子介,张旭.干式地板辐射供暖系统实验研究[J]. 太阳能学报. 2010. 31(7): 834-838.
ZHANG Dongliang, WANG Zijie, ZHANG Xu. Experimental study on dry floor radiant heating system[J]. Journal of Solar Energy. 2010. 31(7): 834-838.
[10]黄立志,李念平,何颖东,等. 不同辐射供冷方式下室内热舒适和能耗模拟分析[J]. 建筑科学, 2017, 33(8): 90-102.
HUANG Lizhi, LI Nianping, HE Yingdong, et al. Simulation analysis of indoor thermal comfort and energy consumption under different radiation cooling methods [J]. Building Science, 2017, 33(8): 90-102.
[11]杨雨佳,刘金祥,牛晓峰,等.冷辐射板布置方式对办公室热环境影响的模拟研究[J]. 流体机械, 2017, 45(1): 77-81.
YANG Yujia, LIU Jinxiang, NIU Xiaofeng, et al. Simulation study on the influence of cold radiant panel layout on office thermal environment [J]. Journal of Fluid Machinery, 2017, 45(1): 77-81.
[12]田彩霞. 辐射供冷方式室内舒适性数值模拟[J].制冷与空调, 2013, 13(5): 97-103.
TIAN Caixia. Numerical simulation of indoor comfort in radiant cooling system [J]. Refrigeration and Air Conditioning, 2013, 13(5): 97-103.
[13]韩成.辐射末端布置方式对辐射供冷供暖室内热环境的影响机理研究[D]. 南京:东南大学, 2019.
HAN Cheng. Study on the influence mechanism of radiant end arrangement on the thermal environment of radiant cooling and heating room [D]. Nanjing: Southeast University, 2019.
[14]中华人民共和国住房和城乡建设部. 民用建筑供暖通风与空气调节设计规范:GB 50736—2012[S].北京: 中国建筑工业出版社, 2012.
Ministry of Housing and UrbanRural Development of the People′s Republic of China. Design Code for heating, ventilation and air conditioning of civil buildings: GB 50736—2012 [S]. Beijing: China Architecture and Construction Press, 2012.
[15]ANSYS.ANSYS Fluent Theory Guide,Version 19.0 [M] . PA:ANSYS, Inc, 2018.
[16]中华人民共和国住房和城乡建设部. 民用建筑室内热湿环境评价标准:GB/T 50785—2012[S]. 北京:中国建筑工业出版社, 2012.
Ministry of Housing and UrbanRural Development of the People′s Republic of China. Evaluation standard for indoor heat and humidity environment of civil buildings: GB/T 50785—2012[S]. Beijing: China Architecture and Construction Press, 2012.
[17]ASHRAE. ASHRAE Handbook Fundamentals [M]. Atlanta, PA,USA: ASHRAE, 2017.
[18]杨荣贤,马庆芳,原庚新.辐射角系数系数手册[M].北京:国防工业出版社,1982.
YANG Rongxian, MA Qingfang, YUAN Gengxin. Radiation angle coefficient coefficient manual [M]. Beijing: National Defense Industry Press, 1982.
[19]FANGER P O, Ba′nhidi L, OLESEN B W, et al. Comfort limits forheated ceilings[J]. ASHRAE Transactions, 1980, 86(2): 141-156.
[20]黄晨.建筑环境学[M].第二版.北京:机械工业出版社,2015.
HUANG Chen. Building environment[M]. 2nd ed. Beijing: China Machine Press, 2015.

备注/Memo

备注/Memo:
收稿日期:2022-11-23修回日期:2023-02-02
基金项目:国家自然科学基金面上项目(52078408)
第一作者:苏玲(1998—),女,硕士,主要研究方向为局部供暖与建筑热环境. E-mail: suling0824@foxmail.com
通信作者:王登甲(1984—),男,教授,博士生导师,主要研究方向为太阳能供暖与建筑热环境. E-mail: wangdengjia@xauat.edu.cn
更新日期/Last Update: 2024-04-08