[1]苏明周,李蕴杰,张 浩,等.带端板连接可更换耗能梁段的钢框筒结构地震易损性分析[J].西安建筑科技大学学报(自然科学版),2022,54(04):491-499.[doi:10.15986/j.1006-7930.2022.04.003]
 SU Mingzhou,LI Yunjie,ZHANG Hao,et al.Seismic vulnerability analysis of steel framed-tube structure with replaceable shear links connected by end-plates[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(04):491-499.[doi:10.15986/j.1006-7930.2022.04.003]
点击复制

带端板连接可更换耗能梁段的钢框筒结构地震易损性分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年04期
页码:
491-499
栏目:
出版日期:
2022-08-28

文章信息/Info

Title:
Seismic vulnerability analysis of steel framed-tube structure with replaceable shear links connected by end-plates
文章编号:
1006-7930(2022)04-0491-09
作者:
苏明周1李蕴杰2张 浩1连 鸣1
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055; 2.西安建筑科技大学 安德学院,陕西 西安 710055)
Author(s):
SU Mingzhou1LI Yunjie2ZHANG Hao1LIAN Ming1
(1.School of Civil Engineering, Xi'an Univ. of Arch.& Tech., Xi'an 710055, China; 2.XAUAT UniSA An De College, Xi'an Univ. of Arch. & Tech., Xi'an 710055, China)
关键词:
钢框筒 IDA 地震易损性分析 抗震性能评估
Keywords:
steel framed-tube structure IDA seismic vulnerability analysis seismic performance evaluation
分类号:
TU392.2
DOI:
10.15986/j.1006-7930.2022.04.003
文献标志码:
A
摘要:
为研究带端板连接可更换耗能梁段高强钢框筒结构(HSS-SFTS)的地震易损性,采用SAP2000软件建立20层、30层、40层HSS-SFTS典型算例模型,从PEER地震数据库中分别选取40条近场含脉冲型和40条普通远场地震波,基于增量动力法(IDA)获得算例在远、近场地震作用下的IDA曲线簇.同时,基于四水准抗震设防目标获得不同极限状态下的地震易损性曲线,并对HSS-SFTS进行地震易损性评估.结果表明:HSS-SFTS算例在四个不同设防水准下的超越概率均小于50%,满足“小震不坏、中震轻度损伤、大震可更换、巨震防倒塌”的抗震设防目标,具有良好的抗震性能; 各算例对应不同水准下近场脉冲型地震的超越概率均高于普通远场地震至少20%,表明近场脉冲型地震对结构的塑性损伤程度影响更大.
Abstract:
In order to study the seismic fragility of high-strength steel frame-and-tube structures(HSS-SFTS)with end-plate bolted connection of replaceable shear links, the finite element models of 20-story, 30-story and 40-story HSS-SFTS were established by using of SAP2000 software. From the PEER seismic database, 40 near-field pulsed and 40 ordinary far-field seismic waves were selected respectively, and the IDA curve clusters of the example under the action of far-field and near-field earthquakes were obtained based on the incremental dynamic method(IDA). At the same time, the seismic vulnerability curves under different limit states were obtained based on the four-level seismic fortification target, and the seismic vulnerability evaluation of HSS-SFTS was carried out. The results show that the exceedance probability of the HSS-SFTS example under the four different fortification levels is less than 50%, which can meet the seismic fortification aims of “no damage in small earthquakes, mild damage in moderate earthquakes, replaceable in large earthquakes, and anti-collapse in huge earthquakes”, and has good seismic performance. The surpass probability of near-field pulsed earthquakes corresponding to different levels of each example is at least 20% higher than that of ordinary far-field earthquakes, indicating that the near-field pulsed earthquakes have a deeper degree of plastic damage to the structure.

参考文献/References:

[1]雷淑忠, 沈祖炎, 刘振华. 超高层钢框筒结构体系截面尺寸的初步确定[J]. 建筑结构, 2005(6): 20-22.
LEI Shuzhong, SHEN Zuyan, LIU Zhenhua. Preliminary determination of section size of super high-rise steel frame tubular structure system[J]. Building Structure, 2005(6): 20-22.
[2]张浩,连鸣,苏明周. 含可更换剪切型耗能梁段的高强钢框筒结构抗震性能分析[J]. 建筑钢结构进展,2020,22(4):21-35.
ZHANG Hao, LIAN Ming, SU Mingzhou. Seismic performance analysis of high-strength steel framed tubular structures with replaceable sheartype energy-dissipating beam sections[J]. Progress in Building Steel Structures, 2020, 22(4):21-35.
[3]关彬林, 连鸣, 苏明周. 含可更换剪切型耗能梁段的组合钢框筒性能优势研究[J]. 建筑钢结构进展, 2020, 22(1): 26-34,46.
GUAN Binlin, LIAN Ming, SU Mingzhou. Research on the performance advantages of composite steel frame cylinders with replaceable shearing energy-dissipating beam sections[J]. Progress in Building Steel Structures, 2020, 22(1): 26-34, 46.
[4]关彬林,连鸣,苏明周,等.高层钢框筒结构截面尺寸预估的新方法[J].西安建筑科技大学学报(自然科学版),2018,50(4):526-535.
GUAN Binlin, LIAN Ming, SU Mingzhou, et al.A new method for estimati-ng the cross-sectional dimension of high-rise steel framed tubular structures[J].J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(4):526-535.
[5]BERTERO V V. Strength and deformation capac-ities of buildings under extreme environments[M]. Prentice-Hall: Englewood Cliffs, NJ, Structural Engineering and Structural Mechanics, Pister KS, 1977: 211-255.
[6]VAMVATSIKOS D, CORNELL C A. Incremental dy-namic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514.
[7]VAMVATSIKOS D, CORNELL C A. Applied incre-mental dynamic analysis[J]. Earthquake Spectra, 2004, 20(2): 523-553.
[8]SHINOZUKA M, FENG M Q, KIM H K, et al. Nonlinear static procedure for fragility curve development[J]. Journal of Engineering Mechanics, 2000, 126(12): 1287-1295.
[9]吴巧云, 朱宏平, 樊剑. 基于增量动力分析的钢框架结构抗震性能评估[J]. 华中科技大学学报(自然科学版), 2012, 40(2): 35-39.
WU Qiaoyun, ZHU Hongping, FAN Jian. Seismic performance evaluation of steel frame structures based on incremental dynamic analysis[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2012, 40(2): 35-39.
[10]杨文侠,孙国华,顾强,等.Y形偏心支撑钢框架结构的抗倒塌性能评估[J].西安建筑科技大学学报(自然科学版),2020,52(6):829-839.
YANG Wenxia, SUN Guohua, GU Qiang, et al. Evaluation of anti-collapse performance of Y-shaped eccentrically braced steel frame structure[J]. J.of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2020,52(6): 829-839.
[11]苏宁粉,周颖,吕西林,等.增量动力分析中地震动强度参数的有效性研究[J].西安建筑科技大学学报(自然科学版),2016,48(6):846-852.
SU Ningfen, ZHOU Ying, LV Xilin, et al. Validity of ground motion intensity parameters in incremental dynamic analysis[J]. J.of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2016, 48(6): 846-852.
[12]周颖, 吕西林, 卜一. 增量动力分析法在高层混合结构性能评估中的应用[J]. 同济大学学报(自然科学版), 2010, 38(2): 183-187,193.
ZHOU Ying, LU Xilin, BU Yi. Application of incremental dynamic analysis method in performance evaluation of high-rise hybrid structures[J]. Journal of Tongji University(Natural Science Edition), 2010, 38(2): 183-187,193.
[13]吕西林, 苏宁粉, 周颖. 复杂高层结构基于增量动力分析法的地震易损性分析[J]. 地震工程与工程振动, 2012, 32(5): 19-25.
LU Xilin, SU Ningfen, ZHOU Ying. Seismic vulnerability analysis of complex high-rise structures based on incremental dynamic analysis method[J]. Earthquake Engineering and Engineering Vibration, 2012, 32(5): 19-25.
[14]关彬林, 连鸣, 苏明周. 含可更换剪切型耗能梁段的组合钢框筒截面尺寸预估方法探究[J]. 建筑钢结构进展, 2020, 22(3): 1-11,21.
GUAN Binlin, LIAN Ming, SU Mingzhou. Research on the estimation method of the section size of the composite steel frame cylinder with replaceable shearing energy-dissipating beam sections[J]. Progress in Building Steel Structures, 2020, 22(3): 1 -11,21.
[15]程倩倩,连鸣,苏明周,等.含端板螺栓连接耗能梁段的高强钢框筒结构基于性能的塑性设计方法研究[J].工程力学,2021,38(7):167-182.
CHENG Qianqian, LIAN Ming, SU Mingzhou, et al. Research on performance-based plastic design method of high-strength steel framed tubular structures with end-plate bolted energy-dissipating beam sections[J]. Engineering Mechanics, 2021, 38( 7):167-182.
[16]张浩, 连鸣, 苏明周. 耗能梁段布置方式对含可更换剪切型耗能梁段的高强钢框筒结构抗震性能的影响[J]. 建筑钢结构进展, 2020, 22(5): 51-63,132.
ZHANG Hao, LIAN Ming, SU Mingzhou. Influence of energy-dissipating beam section arrangement on seismic performance of high-strength steel framed tubular structures with replaceable shear-type energy-dissipating beam sections[J]. Progress in Building Steel Structures, 2020, 22(5): 51-63,132.
[17]李爽, 谢礼立. 近场问题的研究现状与发展方向[J]. 地震学报, 2007, 29(1): 102-111.
LI Shuang, XIE Lili. The research status and development direction of the near-field problem[J]. Acta Seismologica Sinica, 2007, 29(1): 102-111.
[18]KALKAN E, KUNNATH S K. Effects of fling step and forward directivity on seismic response of buildings[J]. Earthquake Spectra, 2006, 22(2): 367-390.
[19]ZHANG H, LIAN M, SU M, et al. Lateral force distribution in the inelastic state for seismic design of high-strength steel framed-tube structures with shear links[J]. Struct Design Tall Spec Build, 2020,e1801.
[20]施炜, 叶列平, 陆新征. 基于一致倒塌风险的建筑抗震评价方法研究[J]. 建筑结构学报, 2012, 33(6): 1-7.
SHI Wei, YE Lieping, LU Xinzheng. Research on building seismic evaluation method based on consistent collapse risk[J]. Journal of Building Structures, 2012, 33(6): 1-7.
[21]CELIK O C, ELLINGWOOD B R. Seismic fragilities for non-ductile reinforced concrete frames-role of aleatoric and epistemic uncertainties[J]. Structural Safety, 2010, 32(1): 1-12.
[22]ELLINGWOOD B R, CELIK O C, KINALI K. Fragility assessment of building structural systems in mid-america[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(13): 1935-1952.
[23]中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010.[S]. 北京: 中国建筑工业出版社, 2016.
Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Code for seismic design of buildings: GB 50011-2010[S]. Beijing: China Architecture and Construction Press, 2016.
[24]中国地震局. 中国地震动参数区划图:GB 18306-2015.[S]. 北京: 中国标准出版社, 2015.
China Earthquake Administration. Zoning map of earthquake parameters in China: GB 18306-2015[S]. Beijing: China Standard Press, 2015.

相似文献/References:

[1]关彬林,连鸣,苏明周,等.高层钢框筒结构截面尺寸预估的新方法[J].西安建筑科技大学学报(自然科学版),2018,50(04):526.[doi:10.15986/j.1006-7930.2018.04.010]
 GUAN Binlin,LIAN Ming,SU Mingzhou,et al.A new method for estimating section dimension of high-rise steel framed-tube structure[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(04):526.[doi:10.15986/j.1006-7930.2018.04.010]
[2]连鸣,周玉浩,李浩翔.基于性能的含可更换耗能梁段高强钢框筒结构抗震性能研究[J].西安建筑科技大学学报(自然科学版),2024,56(01):65.[doi:10.15986/j.1006-7930.2024.01.009]
 LIAN Ming,ZHOU Yuhao,LI HaoXiang.Seismic performance of high-strength steel framedtube structures with replaceable shear links based on performance design[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(04):65.[doi:10.15986/j.1006-7930.2024.01.009]

备注/Memo

备注/Memo:
收稿日期:2021-07-13修改稿日期:2022-08-22
基金项目:国家自然科学基金资助项目(51708444); 陕西省自然科学基金基础研究计划项目(2018JQ5074)
第一作者:苏明周(1971—),男,教授,博士,博导,主要从事新型钢结构体系和设计理论研究.E-mail:sumingzhou@xauat.edu.cn. 通信作者:张 浩(1993—),男,讲师,博士,主要从事新型钢结构体系抗震性能研究.E-mail:zhanghao0219@xauat.edu.cn
更新日期/Last Update: 2022-08-28