[1]连鸣,周玉浩,李浩翔.基于性能的含可更换耗能梁段高强钢框筒结构抗震性能研究[J].西安建筑科技大学学报(自然科学版),2024,56(01):65-73.[doi:10.15986/j.1006-7930.2024.01.009]
 LIAN Ming,ZHOU Yuhao,LI HaoXiang.Seismic performance of high-strength steel framedtube structures with replaceable shear links based on performance design[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(01):65-73.[doi:10.15986/j.1006-7930.2024.01.009]
点击复制

基于性能的含可更换耗能梁段高强钢框筒结构抗震性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年01期
页码:
65-73
栏目:
出版日期:
2024-02-28

文章信息/Info

Title:
Seismic performance of high-strength steel framedtube structures with replaceable shear links based on performance design
文章编号:
1006-7930(2024)01-0065-09
作者:
连鸣12 周玉浩1 李浩翔1
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055; 2.西安建筑科技大学 结构工程与抗震教育部重点实验室,陕西 西安 710055)
Author(s):
LIAN Ming12 ZHOU Yuhao1 LI HaoXiang1
(1.School of Civil Engineering, Xi′an Univ. of Arch. & Tech., Xi′an 710055, China;2.Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education (XAUAT), Xi′an 710055, China)
关键词:
钢框筒耗能梁段高强钢破坏模式基于性能的抗震设计层间侧移
Keywords:
steel framed-tube shear link high strength steel failure mode performancebased seismic design inter-story drift
分类号:
TU391,TU398
DOI:
10.15986/j.1006-7930.2024.01.009
文献标志码:
A
摘要:
含可更换耗能梁段的高强钢框筒结构(HSS-SFT-RSL)结合了耗能梁段耗能强、钢框筒抗侧刚度大、高强钢承载力高等优点,是一种抗震性能优良的结构体系.传统设计方法需要进行复杂的迭代和计算才能使结构达到预期性能目标,且无法较为准确地控制结构的塑性发展顺序和破坏模式,本文采用课题组提出的基于性能的塑性设计方法(PBPD)各设计一个30层HSS-SFT-RSL算例和含可更换剪切型耗能梁段的普通钢框筒结构(CS-SFT-RSL)算例,通过静力和动力弹塑性分析对比两算例的抗震性能.结果表明:采用PBPD法设计的两算例具有相似的顶点侧移角和破坏模式,HSS-SFT-RSL算例抗侧刚度略低,但极限承载力更高;在罕遇水准地震下,两算例各层耗能梁段均能参与耗能,层间侧移角沿结构高度分布均匀,避免了薄弱层,残余层间变形较小,有利于耗能梁段更换和结构震后功能的快速恢复.
Abstract:
The high-strength steel framedtube structure with replaceable shear links (HSS-SFT-RSL) is a structural system with excellent seismic performance, which combines the advantages of strong energy-dissipating beam section, high lateral stiffness of framed-tube tube and high bearing capacity of high-strength steel. The traditional design method requires complex iterations and calculations to achieve the expected performance goals of the structure, and it is impossible to control the plastic development sequence and failure mode of the structure more accurately. In this paper, a set of 30-story HSS-SFT-RSL cases and common steel frame-tube structures with replaceable shear links (CS-SFT-RSL) cases are designed using the performance-based plastic design method (PBPD) proposed by the research group, and the seismic performance of the two cases is compared by static and dynamic elastic-plastic analysis. The research results demonstrate that the two cases designed by PBPD method have similar vertex lateral shift angles and damage modes, and the HSS-SFT-RSL case has slightly lower lateral stiffness but higher ultimate bearing capacity. Under the rare level earthquake, the energy-consuming beam segments of the two cases can participate in energy dissipation, and the inter-story lateral shift angles are evenly distributed along the height of the structure, which avoids the weak layer. In addition, the residual inter-story deformation is small, which is conducive to the replacement of the energy dissipation beam section and the rapid recovery of the structure after the earthquake.

参考文献/References:

[1]LIAN M, CHENG Qianqian, ZHANG Hao, et al. Numerical study of the seismic behavior of steel frame-tube structures with bolted webconnected replaceable shear links [J]. Steel and Composite Structures, 2020, 35(3): 305-325.
[2]程倩倩, 连鸣, 苏明周, 等. 含可更换剪切型耗能梁段的钢框筒结构抗震性能研究 [J]. 建筑钢结构进展, 2020, 22(1): 35-46.
CHENG Qianqian, LIAN Ming, SU Mingzhou, et al. Seismic behavior study of steel framed-tube structure with replaceable shear links [J]. Progress in Steel Building Structures, 2020, 22(1): 35-46.
[3]连鸣, 韩文凯, 莫文茹, 等.可更换剪切型耗能梁段高强钢框筒结构抗震性能分析 [J]. 建筑结构, 2020, 50(1): 74-82.
LIAN Ming, HAN Wenkai, MO Wenru, et al. Investigation on seismic performance of highstrength steel fabricated steel framedtube structure with replaceable shear type energydissipated beam section [J]. Building Structures, 2020, 50(1): 74-82.
[4]连鸣, 周玉浩, 韩文凯. 带耗能梁段的高强钢框筒结构抗震性能试验研究与数值分析 [J]. 土木与环境工程学报(中英文), 2021, 43(3): 24-36.
LIAN Ming, ZHOU Yuhao, HAN Wenkai, et al. Experimental and numerical analysis of seismic performance of high-strength steel fabricatedtube structures with replaceable shear link [J]. Journal of Civil and Environmental Engineering, 2021, 43(3): 24-36.
[5]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检查检疫总局. 建筑抗震设计规范:GB 50011—2010 [S]. 北京: 中国建筑工业出版社, 2010.
Ministry of Housing and UrbanRural Development of the People′s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China. Code for seismic design of building: GB 18306—2015 [S]. Beijing: China Architecture & Building Press, 2010.
[6]ASCE.Minimum design loads for buildings and other structures:ASCE 7—10[S]. Virginia: American Society of Civil Engineers (ASCE), 2010.
[7]吕西林. 建筑结构抗震设计理论与实例[M]. 上海:同济大学出版社, 2002.
LU Xilin. Theory and example of seismic design of building structures[M]. Shanghai: Tongji University Press, 2002.
[8]NAEIM F, BHATIA H, LOBO R M. Performance based seismic engineering[M]. The Seismic Design Handbook, 2001: 757-792.
[9]ATC. Seismic evaluation and retrofit of existing concrete buildings: ATC-40[S]. Reston, VA: Applied Technology Council Engineers, 1996.
[10]ASCE. Seismic rehabilitation of existing buildings: ASCE/SEI 7-10[S]. Reston, VA: American Society of Civil Engineers, 2010.
[11]FEMA. Seismic performance assessment of buildings: Volume 1-Methodology (FEMA-P58-1)[S]. Washington, DC: Federal Emergency Management Agency, 2012.
[12]FEMA. Seismic performance assessment of buildings: Volume 2-Implementation guide (FEMA-P58-2)[S]. Washington, DC: Federal Emergency Management Agency, 2012.
[13]SCHAO S H, GOEL S C, LEE S S. A seismic design lateral force distribution based on inelastic state of structure[J]. Earthquake Spectra, 2007, 23(3): 547-69.
[14]LEE S S, GOEL S C, CHAO S H. Performancebased seismic design of steel moment frames using target drift and yield mechanism[C]//13th World Conf Earthq Eng.Dissertation Abstracts International,2004:266-280.
[15]CHAO S H, GORL S C. Performancebased seismic design of eccentrically braced frames using drift and yield mechanism as performance criteria[J]. Engineering Journal, 2006, 43(3): 173-200.
[16]陆新征, 叶列平, 缪志伟. 建筑抗震弹塑性分析[M]. 北京: 中国建筑工业出版社, 2009.
LU Xinzheng, YE Lieping, MIU Zhiwei. Elasto-plastic analysis of buildings against earthquake[M]. Beijing: China Architecture & Building Press, 2009.
[17]门进杰, 周婷婷, 张雅融, 等. 钢筋混凝土柱-钢梁组合框架结构基于性能的抗震设计方法和量化指标[J].建筑结构学报, 2015, 36(S2): 28-34.
MEN Jinjie, ZHOU Tingting, ZHANG Yarong, et al. Performance-based seismic design method and quantified performance index of RCS composite frame structure[J]. Journal of Building Structures, 2015, 36(S2): 28-34.
[18]郝际平, 袁昌鲁, 樊春雷, 等. 钢板剪力墙结构基于性能的塑性设计方法研究[J].工程力学, 2015, 32(7): 118-127.
HAO Jiping, YUAN Changlu, FAN Chunlei, et al. Performance-based plastic design method for the slender unstiffened steel plate shear walls[J]. Engineering Mechanics, 2015, 32(7): 118-127.
[19]程倩倩, 连鸣, 苏明周, 等. 含端板螺栓连接耗能梁段的高强钢框筒结构基于性能的塑性设计方法研究 [J]. 工程力学, 2021, 38(7): 167-182.
CHENG Qianqian, LIAN Ming, SU Mingzhou, et al. Performancebased plastic design method for high strength steel framedtubes with endplate connected shear links [J]. Engineering Mechanics, 2021, 38(7): 167-182.
[20]张浩, 连鸣, 苏明周. 耗能梁段布置方式对含可更换剪切型耗能梁段的高强钢框筒结构抗震性能的影响 [J]. 建筑钢结构进展, 2020, 22(5): 51-63,132.
ZHANG Hao, LIAN Ming, SU Mingzhou. Effects of layout of shear links on the seismic performance of high-strength steel framed-tube structure [J]. Progress in Steel Building Structures 2020, 22(5): 51-63,132.
[21]Federal Emergency Management Agency. Prestandard and commentary for the seismic rehabilitation of buildings,FEMA 356[S]. Washington, DC: Rehabilitation Requirement, 2000.
[22]杨文侠, 李春燕, 顾强. Y形偏心支撑钢框架SAP2000非线性分析模型 [J]. 兰州理工大学学报, 2010, 36(6): 111-114.
YANG Wenxia, LI Chunyan, GU Qiang. Nonlinear analysis model SAP2000 for eccentrically braced steel frames with Y-links [J]. Journal of Lanzhou University of Technology, 2010, 36(6): 111-114.
[23]连鸣, 程倩倩, 苏明周, 等. 带端板螺栓连接可更换耗能梁段的高强钢框筒结构抗震性能试验研究 [J].建筑结构学报, 2021, 42(11): 29-40.
LIAN Ming, CHENG Qianqian, SU Mingzhou, et al. Experimental study on seismic performance of high-strength steel framedtube structures with end-plate connected replaceable shear links [J]. Journal of Building Structures, 2021, 42(11): 29-40.

相似文献/References:

[1]连 鸣,苏明周,郭 艳.高强钢组合K型偏心支撑框架耗能梁段长度研究[J].西安建筑科技大学学报(自然科学版),2014,46(02):217.[doi:10.15986/j.1006-7930.2004.02.012]
 LIAN Ming,SU Mingzhou,GUO Yan.Study on the performance of link beam of high strength steel K-type eccentrically braced frame[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(01):217.[doi:10.15986/j.1006-7930.2004.02.012]
[2]关彬林,连鸣,苏明周,等.高层钢框筒结构截面尺寸预估的新方法[J].西安建筑科技大学学报(自然科学版),2018,50(04):526.[doi:10.15986/j.1006-7930.2018.04.010]
 GUAN Binlin,LIAN Ming,SU Mingzhou,et al.A new method for estimating section dimension of high-rise steel framed-tube structure[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(01):526.[doi:10.15986/j.1006-7930.2018.04.010]
[3]苏明周,李蕴杰,张 浩,等.带端板连接可更换耗能梁段的钢框筒结构地震易损性分析[J].西安建筑科技大学学报(自然科学版),2022,54(04):491.[doi:10.15986/j.1006-7930.2022.04.003]
 SU Mingzhou,LI Yunjie,ZHANG Hao,et al.Seismic vulnerability analysis of steel framed-tube structure with replaceable shear links connected by end-plates[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(01):491.[doi:10.15986/j.1006-7930.2022.04.003]

备注/Memo

备注/Memo:
收稿日期:2022-11-01修回日期:2023-02-02
基金项目:国家自然科学基金项目(51708444)
第一作者:连鸣(1987—),男,博士,副教授,主要研究新型钢结构体系抗震性能与设计方法.E-mail: lianming@xauat.edu.cn
通信作者:周玉浩(1996—),男,博士生,主要研究新型钢结构体系抗震性能.E-mail: zhouyuhao0925@163.com
更新日期/Last Update: 2024-04-08