参考文献/References:
[1] MEDRI G.A nonlinear elastic model for isotropic materials with different behavior in tension and compression[J].Transactions of the ASME,1982,26(104):26-28.
[2] BERT C W,REDDY J N,CHAO W C,et al.Vibration of thick rectangular plates of bimodulus composite material[J].Journal of Applied.Mechanics,1981,48(2):371-376.
[3] SRINIVASAN R S,RAMACHANDRA L S.Axisymmetric nonlinear dynamic response of bimodulus annular plates[J].Journal of Vibration and Acoustics,1990,112(2):202-205.
[4] 阿巴尔楚米扬.不同模量弹性理论[M].邬瑞锋,张允真,译.北京:中国铁道出版社,1986:11-22.
AMBARTSUMYAN S A.Elasticity theory of different modulus[M].WU Rui-Feng,ZHANG Yun-Zhen,Transled.Beijing:China Railway Press,1986:11-22.
[5] 李战莉,黄再兴.双模量泡沫材料等效弹性模量的细观力学估算方法[J].南京航空航天大学学报,2006,38(4):464-468.
LI Zhan-li,HUANG Zai-xing.Meso-Mechanical method for estimating equivalent elastic modulus of foam-solid with double-modulus[J].Journal of Nanjing University of Aeronautics & Astronautics,2006,38(4):464-468.
[6] 曾纪杰.对中柔度压杆的双模量理论的修正[J].机械强度,2006,28(3):462-464.
ZENG Ji-Jie.Revision of the formula with bimodulusim intermediate column[J].Journal of Mechanical Strength,2006,28(3):462-464.
[7] 蔡来生,俞焕然.拉压模量不同弹性物质的本构[J].西安科技大学学报,2009,29(1):17-21.
CAI Lai-sheng,YU Huan-ran.Constitutive relation of elastic materials with different elastic moduli in tension and compression[J].Journal of Xi′an University of Science and Technology,2009,29(1):17-21.
[8] 罗战友,夏建中,龚晓南.不同拉压模量及软化特性材料的柱形孔扩张问题的统一解[J].工程力学,2008,25(9):79-84.
LUO Zhan-you,XIA Jian-zhong,GONG Xiao-nan.Unified solution for expansion of cylindrical cavity in strain-softening materials with different elastic moduli in tension and compression[J].Engineering Mechanics,2008,25(9):79-84.
[9] 吴 莹,赵永刚,李世荣.拉压弹性模量不等材料杆的纯弯曲及偏心压缩[J].甘肃工业大学学报,2001,21(1):101-105.
WU Ying,ZHAO Yong-gang,LI Shi-rong.Pure bend and Excentrical Compression of Rod Made of Material with Nonidentical Elastic Modulus of Tension and Compression[J].Journal of Gansu University of Technology,2001,21(1):101-105.
[10] 王子昆.拉压不同模量圆柱薄壳在均匀轴压下的对称失稳[J].西安交通大学学报,1989,23(6):94-100.
WANG Zi-kun.Symmetrical Buckl1ng of Clrcular Cylindrical Thin Shell With Different Elastic Moduli Intension and Compression Under A Well-Distributed Axial Load[J].Journal of Xi′an Jiaotong University,1989,23(6):94-100.
相似文献/References:
[1]吴 晓.用Kantorovich及Galerkin联合法研究双模量板的弯曲[J].西安建筑科技大学学报:自然科学版,2012,44(04):457.[doi:10.15986/j.1006-7930.2012.04.001]
WU Xiao.Kantorovich and Galerkin solution to the bending of bimodulous plate[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2012,44(05):457.[doi:10.15986/j.1006-7930.2012.04.001]
[2]吴 晓,黄 翀.温度场中功能梯度材料圆板的非线性弯曲[J].西安建筑科技大学学报:自然科学版,2013,45(05):694.[doi:10.15986/j.1006-7930.2013.05.015]
WU Xiao,HUANG Chong.Nonlinear bending calculation of FGM circular plate in the temperature field[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2013,45(05):694.[doi:10.15986/j.1006-7930.2013.05.015]