[1]吴 晓,杨立军,黄 翀.双模量圆板中心在冲击荷载作用下的弹性计算[J].西安建筑科技大学学报:自然科学版,2012,44(05):614-619.[doi:10.15986/j.1006-7930.2012.05.002]
 WU Xiao,YANG Li-jun,HUANG Chong.Elastic dynamic calculation for bimodulous circular plate under the condition of impact load[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2012,44(05):614-619.[doi:10.15986/j.1006-7930.2012.05.002]
点击复制

双模量圆板中心在冲击荷载作用下的弹性计算()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
44
期数:
2012年05期
页码:
614-619
栏目:
出版日期:
2012-10-31

文章信息/Info

Title:
Elastic dynamic calculation for bimodulous circular plate under the condition of impact load
文章编号:
1006-7930(2012)05-0614-06
作者:
吴 晓杨立军黄 翀
(湖南文理学院土木建筑工程学院,湖南 常德 415000)
Author(s):
WU Xiao YANG Li-jun HUANG Chong
(Dept. of Civil and Architectural Engineering, Hunan University of Arts and Science, Changde 415000, China)
关键词:
双模量圆板冲击荷载动力因数
Keywords:
bimodulous circular plate impact load dynamic factor
分类号:
O321
DOI:
10.15986/j.1006-7930.2012.05.002
文献标志码:
A
摘要:
采用弹性理论建立了双模量圆板在外荷载作用下的静力平衡方程,利用此静力平衡方程确定了双模量圆板的中性面位置,建立了双模量圆板在外荷载作用下的弯曲微分方程,并求得了圆板在集中荷载作用下的静力挠度表达式.在此基础上,考虑了冲击物和被冲击双模量圆板的质量影响,采用能量法及相当质量法将具有分布质量的双模量圆板转化为只有一个集中质量的弹性系统,从而导出双模量圆板中心在冲击荷载作用下的动力因数.算例分析表明,冲击重物的质量与冲击重物冲击前瞬间具有的速度对动力因数的影响要比其他因素大些
Abstract:
Static equilibrium equation for bimodulous circular plate under the condition of external loads was established by using elastic theory. The location of neutral plane in bimodulous circular plate was determined by the utilization of static equilibrium equation. The bending deformation differential equations for bimodulous circular plate was derived, and the static deflection expression for bimodulous circular plate under the condition of impact load was acquired. On this basis, the influence of the mass of impact objects and shocked bimodulous circular plate were considered, the bimodulous circular plate with distributed mass was transformed into a flexible system with only a concentrated mass, and the dynamic factor for bimodulous circular plate under the condition of impact load was derived. The computational result indicates that the mass and the momentary speed before the shocked mement of impact objects had more influence on dynamic factor than other factors

参考文献/References:

[1] MEDRI G.A nonlinear elastic model for isotropic materials with different behavior in tension and compression[J].Transactions of the ASME,1982,26(104):26-28.
[2] BERT C W,REDDY J N,CHAO W C,et al.Vibration of thick rectangular plates of bimodulus composite material[J].Journal of Applied.Mechanics,1981,48(2):371-376.
[3] SRINIVASAN R S,RAMACHANDRA L S.Axisymmetric nonlinear dynamic response of bimodulus annular plates[J].Journal of Vibration and Acoustics,1990,112(2):202-205.
[4] 阿巴尔楚米扬.不同模量弹性理论[M].邬瑞锋,张允真,译.北京:中国铁道出版社,1986:11-22.
AMBARTSUMYAN S A.Elasticity theory of different modulus[M].WU Rui-Feng,ZHANG Yun-Zhen,Transled.Beijing:China Railway Press,1986:11-22.
[5] 李战莉,黄再兴.双模量泡沫材料等效弹性模量的细观力学估算方法[J].南京航空航天大学学报,2006,38(4):464-468.
LI Zhan-li,HUANG Zai-xing.Meso-Mechanical method for estimating equivalent elastic modulus of foam-solid with double-modulus[J].Journal of Nanjing University of Aeronautics & Astronautics,2006,38(4):464-468.
[6] 曾纪杰.对中柔度压杆的双模量理论的修正[J].机械强度,2006,28(3):462-464.
ZENG Ji-Jie.Revision of the formula with bimodulusim intermediate column[J].Journal of Mechanical Strength,2006,28(3):462-464.
[7] 蔡来生,俞焕然.拉压模量不同弹性物质的本构[J].西安科技大学学报,2009,29(1):17-21.
CAI Lai-sheng,YU Huan-ran.Constitutive relation of elastic materials with different elastic moduli in tension and compression[J].Journal of Xi′an University of Science and Technology,2009,29(1):17-21.
[8] 罗战友,夏建中,龚晓南.不同拉压模量及软化特性材料的柱形孔扩张问题的统一解[J].工程力学,2008,25(9):79-84.
LUO Zhan-you,XIA Jian-zhong,GONG Xiao-nan.Unified solution for expansion of cylindrical cavity in strain-softening materials with different elastic moduli in tension and compression[J].Engineering Mechanics,2008,25(9):79-84.
[9] 吴 莹,赵永刚,李世荣.拉压弹性模量不等材料杆的纯弯曲及偏心压缩[J].甘肃工业大学学报,2001,21(1):101-105.
WU Ying,ZHAO Yong-gang,LI Shi-rong.Pure bend and Excentrical Compression of Rod Made of Material with Nonidentical Elastic Modulus of Tension and Compression[J].Journal of Gansu University of Technology,2001,21(1):101-105.
[10] 王子昆.拉压不同模量圆柱薄壳在均匀轴压下的对称失稳[J].西安交通大学学报,1989,23(6):94-100.
WANG Zi-kun.Symmetrical Buckl1ng of Clrcular Cylindrical Thin Shell With Different Elastic Moduli Intension and Compression Under A Well-Distributed Axial Load[J].Journal of Xi′an Jiaotong University,1989,23(6):94-100.

相似文献/References:

[1]吴 晓.用Kantorovich及Galerkin联合法研究双模量板的弯曲[J].西安建筑科技大学学报:自然科学版,2012,44(04):457.[doi:10.15986/j.1006-7930.2012.04.001]
 WU Xiao.Kantorovich and Galerkin solution to the bending of bimodulous plate[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2012,44(05):457.[doi:10.15986/j.1006-7930.2012.04.001]
[2]吴 晓,黄 翀.温度场中功能梯度材料圆板的非线性弯曲[J].西安建筑科技大学学报:自然科学版,2013,45(05):694.[doi:10.15986/j.1006-7930.2013.05.015]
 WU Xiao,HUANG Chong.Nonlinear bending calculation of FGM circular plate in the temperature field[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2013,45(05):694.[doi:10.15986/j.1006-7930.2013.05.015]

备注/Memo

备注/Memo:
收稿日期:2012-04-18 修改稿日期:2012-10-08
基金项目:湖南省“十二五”重点建设学科(机械设计及理论)和湖南省教育厅项目(11A081)
作者简介:吴 晓(1965-),男,湖南常德人,教授,主要从事结构振动理论研究
更新日期/Last Update: 2015-09-01