[1]刘俊卿,李红孝,李 倩.增量型横观各向同性损伤理论与数值分析[J].西安建筑科技大学学报:自然科学版,2013,45(01):1-4,9.[doi:10.15986/j.1006-7930.2013.01.001]
 LIU Jun-qing,LI Hong-xiao,LI Qian.Increment transverse isotropic damage theory and numerical analysis[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2013,45(01):1-4,9.[doi:10.15986/j.1006-7930.2013.01.001]
点击复制

增量型横观各向同性损伤理论与数值分析()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
45
期数:
2013年01期
页码:
1-4,9
栏目:
出版日期:
2013-02-28

文章信息/Info

Title:
Increment transverse isotropic damage theory and numerical analysis
文章编号:
1006-7930(2013)01-0001-04
作者:
刘俊卿李红孝李 倩
(西安建筑科技大学理学院,陕西 西安 710055)
Author(s):
LIU Jun-qing LI Hong-xiao LI Qian
(School of Science, Xian Univ. of Arch. & Tech., Xian 710055,China)
关键词:
横观各向同性损伤增量型弹-塑性变形刚度张量有限元模拟
Keywords:
transverse isotropic damage increment the plastic deformation stiffness tensor finite element simulation
分类号:
TU435
DOI:
10.15986/j.1006-7930.2013.01.001
文献标志码:
A
摘要:
为了研究损伤对材料力学性能的影响,以横观各向同性损伤理论为基础,引入损伤变量因子,构造有效损伤张量M(D),建立了增量型有效应力方程.应用塑性流动的分析方法,得到弹性应变和有效弹性应变之间的关系.根据von Mises屈服准则,得到塑性四阶对称刚度张量.通过对带孔平板拉伸的有限元分析,探讨了考虑损伤后材料应力集中处应力-应变曲线的变化规律,给出损伤对材料的影响关系.结果表明,损伤加快了材料变形的发展
Abstract:
In order to research the damage on the mechanical properties of materials the increment of effective stress equation is established, based on the transverse isotropic damage theory as a foundation, by introducing damage variable factor and the tectonic effective damage tensor M(D).Similar to the plastic flow analysis method the relationship between elastic-strain the effective elastic-strain is acquired. By the von Mises yield criterion, plastic fourth-order symmetric stiffness tensor is obtained. The stress strain curve of variation is discussed through the uniaxial tensile and finite element of a flat plate with a hole, giving the influence of damage on the maferial. The results show that the deformation is accelerated by the material damage

参考文献/References:

[1] Chow CL, Wang J. An anisotropic theory of elasticity for continuum damage mechanics[J].International Journal of Fracture,1987,33:3-16.

[2] 余天庆. 损伤理论及其应用 [M]. 北京: 国防工业出版社,1993.

YU Tian-qing. Damage theory and its application[M].Beijing: Defense Industry Press, 1993.

[3] Chow CL, Wang J. An anisotropic theory of continuum damage mechanics for ductile fracture[J].Engineering Fracture Mechanics, 1987 , 27:547-558.

[4] 王勖成. 有限元单元法[M]. 北京: 清华大学出版社,2003:560-561.

WANG Xu-cheng. Finite element method[M].Beijing: Tsinghua University Press, 1993: 560-561.

[5] 王勖成, 邵 敏. 有限元单元法基本原理和数值方法[M].2 版. 北京: 清华大学出版社,1993:500-504.

WANG Xu-cheng, SHAO Min.The basic principle and method of finite element numerical method[M].The second edition. Beijing: Tsinghua University Press,1993: 500-504.

备注/Memo

备注/Memo:
收稿日期:2012-06-25 修改稿日期:2013-01-15
基金项目:国家自然科学基金资助项目(51178387)
作者简介:刘俊卿(1957-),男,陕西神木人,教授,主要从事工程力学的教学与研究.
更新日期/Last Update: 2015-10-05