[1]朱军强,黄铭其,高铭尚,等.空间杆系结构动力失稳区域研究[J].西安建筑科技大学学报:自然版,2016,48(01):77-81.[doi:10.15986/j.1006-7930.2016.01.013]
 ZHU Junqiang,HUANG Mingqi,GAO Mingshang,et al.The study on the spatial frames structural dynamic stability region[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edi,2016,48(01):77-81.[doi:10.15986/j.1006-7930.2016.01.013]
点击复制

空间杆系结构动力失稳区域研究()
分享到:

西安建筑科技大学学报:自然版[ISSN:1006-7930/CN:61-1295/TU]

卷:
48
期数:
2016年01期
页码:
77-81
栏目:
出版日期:
2016-02-28

文章信息/Info

Title:
The study on the spatial frames structural dynamic stability region
文章编号:
1006-7930(2016)01-0077-05
作者:
朱军强黄铭其高铭尚徐 妺李明哲
西安建筑科技大学土木工程学院,陕西 西安 710055
Author(s):
ZHU Junqiang HUANG Mingqi GAO Mingshang XU Mo LI Mingzhe
School of Civil Engineering, Xi′an Univ. of Arch. & Tech., Xi′an 710055, China
关键词:
马奇耶-希拉方程式动力失稳区域阻尼空间杆系结构
Keywords:
Mathieu-Hill equation dynamic instability region damping spatial frames structural
分类号:
TU399
DOI:
10.15986/j.1006-7930.2016.01.013
文献标志码:
A
摘要:
结构在外荷载的作用下,其非线性几何刚度随着结构的变形发生变化而变化.基于结构动力学理论,采用有限元方法研究空间杆系结构的动力失稳区域.利用有限元变刚度的理论,同时引入不同参数和变换公式推导出马奇耶-希拉方程式.通过Ansys 和Matlab 软件进行编程模拟,分析无阻尼情况下的结构动力不稳定区域,并与鲍洛金不稳定区域推导式结果进行对比.结果表明:推导的结果接近鲍洛金不稳定区域结果,第一失稳区域相对保守,第二失稳区域非常接近,从而验证了的推导公式的适用性.可为实际工程结构频率避开失稳区域进行动力失稳设计提供理论的依据.
Abstract:
Based on structural dynamics research foundation, finite element method is used to study the dynamic buckling of the spatial frames structure area. Under the action of outer load, the nonlinear geometric stiffness of the structure changes with deformation of the structure change. In this paper, using the theory of finite element analysis of variable stiffness, and at the same time the introduction of different parameters and transform formula Mathieu-Hill equation is deduced. By Ansys and Matlab software programming simulation the structure dynamic unstable region without damping is compared with the results derived type of bolotin unstable regions. Results show that the results derived in this paper approaching bolotin unstable area, the first buckling area and the second instability area is relatively conservative. The results thus verified the correctness of the formula derived in this paper. This provides theoretical basis for practical engineering design, in helping us to avoid the structure in the area of instability of the consequences of damage.

参考文献/References:

[1] 彭一刚, 建筑空间组合论[M]. (第3 版)北京:中国建筑工业出版社,2008.
PENG Yigang, Architectural space combinatorial theory [M]. 3rd ed. Beijing: China Architecture & Building Press, 2008.
[2] MIN Jae Shin, HUN Heo, JOO Hoh. Dynamic instability analysis of a non-autonomous system subjected to moving impulsive non-conservative load[J]. KSME Journal,1987,1(1): 31-35.
[3] BALDINGER M, BELYAEV A K, IRSCHIK H. Principal and second instability regions of shear-deformable polygonal plates[J].Computational Mechanics, 2000,26(3):288-294.
[4] 沈祖炎, 胡学仁. 单角钢压杆的稳定计算[J].同济大学学报(自然科学版), 1982(3):56-70.
SHEN Zuyan, HU Xueren, The stability calculation of single steel angles compression bar[J]. Journal of Tongji University(Natural Science Edition), 1982(3): 56-70.
[5] 张其林, 沈祖炎. 薄壁轴压焊接方管柱整体稳定-局部稳定相互作用问题的研究[J]. 建筑结构学报, 1991(6):15-24.
ZHANG Qilin, SHEN Zuyan. Interaction between overall and local instabiligy of axially loaded thin-valled box columns[J]. Journal of Building Structures, 1991(6):15-24.
[6] 张其林, 沈祖炎. 阶形柱的极限承载力[J]. 同济大学学报(自然科学版), 1987(1): 1-12.
ZHANG Qilin, SHEN Zuyan. Ultimate strength of steel stepped column[J]. Journal of Tongji University(Natural Science Edition), 1987(1): 1-12.
[7] 李开禧, 肖允微. 单向偏心弹塑性压杆的临界力计算[J].重庆建筑工程学院学报, 1981(1): 79-101.
LI Kaixi, XIAO Yunwei, Critical force calculation for one-way decentered elastic-plastic compressive bar[J]. Journal of Chongqing Institute of Architecture and Engineering,
1981(1): 79-101.
[8] 范峰, 严佳川, 曹正罡. 考虑杆件失稳影响的网壳结构稳定性研究[J].土木工程学报, 2012(5): 9-17.
FAN Feng, YAN Jiachuan, CAO Zhenggang. Study on stability of reticulated shell structures considering the influence of member buckling[J]. China Civil Engineering
Journal, 2012(5): 9-17.
[9] 王安稳. 弹性压应力波下直杆动力失稳的机理和判据[J]. 力学学报, 2001,33(6): 812-820.
WANG Anwen. Mechanism and criterion for dynamic instability of bars under elastic compression wave[J]. Acta Mechanica Sinica, 2001,33(6): 812-820.
[10] 严佳川, 范峰, 曹正罡. 单层柱面网壳结构杆件失稳判别方法[C]//第十四届空间结构学术会议论文集, 福州:2012,11.
YAN Jiachun, FAN Feng, CAO Zhenggang, Analysis method of dymamic stability of single-layer reticulated domes[C]//The 14th the spatial structure of academic
conference proceedings, Fuzhou:2012, 11.
[11] 丁阳, 葛金刚, 李忠献. 考虑损伤累积及杆件失稳效应的网壳结构极限承载力分析[J].工程力学, 2012(5):13-18.
DING Yang, GE Jingang, LI Zhongxian. Analysis on ultimate bearing capacity of reticulated shell considering cumulative damage and instability of member[J]. Engineering
Mechanics, 2012(5): 13-183.
[12] 杨伦, 楼文娟, 陈勇, 等. 覆冰导线舞动作用下输电塔破坏机理的试验研究[J]. 振动与冲击,2013,36(24):70-75.
YANG Lun, LOU Wenjuan, CHEN Yong, et al. Test for failure mechanism of a transmission tower under iced conductor galloping[J]. Journal of Vibration and Shock, 2013,36(24): 70-75.
[13] 杨璐, 徐东辰, 尚帆, 等. 双相型不锈钢焊接工字形截面轴压柱整体稳定性能试验研究[J].建筑结构学报,2015,36(7): 99-105.
YANG Lu, XU Dongchen, SHANG Fan, et al. Experimental study on overall buckling behavior of duplex stainless steel welded I-shaped columns under axial compression[J]. Journal of Building Structures, 2015,36(7):99- 105.
[14] 杨璐, 徐东辰, 尚帆, 等. 双相型不锈钢焊接箱形截面轴压构件整体稳定性能试验研究[J].东南大学学报(自然科学版), 2015,45(2): 364-369.
YANG Lu, XU Dongchen, SHANG Fan, et al. Experimental study on overall buckling behavior of duplexstainless steel welded box columns under axial compression[J].Journal of Southeast University(Natural Science Edition), 2015,45(2): 364-369.
[15] 鲍洛金·符华. 弹性体系的动力稳定性[M].林砚田译,北京:高等教育出版社,1960.
BOLOTIN V V. The dynamic stability of elastic systems[M]. LIN Yantian Translated, Beijing: Higher Education Press, 1960.

备注/Memo

备注/Memo:

收稿日期:2015-07-10 修改稿日期:2016-02-11

基金项目:国家自然科学基金项目(51008245)

作者简介:朱军强(1976-),男,博士,副教授,主要从事工程结构智能减震与控制、结构健康监测及结构加固技术方面研究.E-mail:18710557768@163.com

更新日期/Last Update: 2016-04-02