[1]王燕妮,王慧琴,王建平.局部特征结合形状轮廓匹配的建筑物识别算法[J].西安建筑科技大学学报(自然科学版),2017,49(05):752-0756.[doi:10.15986/j.1006-7930.2017.05.021]
 WANG Yanni,WANG Huiqin,WANG Jianping.A building recognition algorithm based on local feature and shape contour matching[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(05):752-0756.[doi:10.15986/j.1006-7930.2017.05.021]
点击复制

局部特征结合形状轮廓匹配的建筑物识别算法
()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
49
期数:
2017年05期
页码:
752-0756
栏目:
出版日期:
2017-10-28

文章信息/Info

Title:
A building recognition algorithm based on local feature and shape contour matching

文章编号:
1006-7930(2017)05-0752-05
作者:
王燕妮1王慧琴1王建平2
1西安建筑科技大学 信息与控制工程学院,陕西 西安 710055;2 北京航空航天大学 软件学院,北京100191)
Author(s):
WANG Yanni1WANG Huiqin1WANG Jianping2
(1School of Information and Control Engineering, Xi′an Univ of Arch & Tech Xi′an 710055, China;
2School of software, Beihang University, Beijing 100191, China)

关键词:
城市建筑物识别局部特征轮廓匹配尺度信息
Keywords:
urban building recognition local feature contour matching scale information
分类号:
TP391
DOI:
10.15986/j.1006-7930.2017.05.021
文献标志码:
A
摘要:
针对经典不变特征提取算法时间较长的缺点,提出一种局部特征结合形状轮廓匹配的建筑物识别算法首先根据整体建筑物容易受到旋转、倾斜度的影响,提取已知建筑物的局部特征点,确定其方向,对其位置、角度等进行矢量描述;同时依据建筑物不同状态下的尺度变化信息,制定任意形状轮廓匹配相似度准则及映射函数,实现不同光照、不同尺度下的建筑物识别仿真实验结果表明,该方法可以快速、准确地适应不同环境下的建筑物识别.
Abstract:
In order to overcome the shortcomings of the traditional feature extraction algorithm, a building recognition algorithm based on local feature and shape contour matching is proposed First of all, according to the influence of the rotation and inclination of the whole building, the local feature points of the buildings are extracted, the direction determined, and its position and angle described by vectors At the same time, according to the scale change information in different states of the building, the similarity criterion and mapping function of arbitrary shape contour matching are formulated to realize the recognition of buildings with different illumination and different scales The simulation results show that the proposed method can help identify buildings quickly and accurately in different environments.

参考文献/References:


[1]YEH T, LEE J J, DARRELL T Fast concurrent object localization and recognition[C]// Computer vision and pattern recognition, IEEE Conference onCVPR 2009 Newyork:IEEE, 2009:280287.
[2]KACˇUR J, ROZINAJ G Building accurate and robust HMM models for practical ASR systems[J]. Telecommunication Systems,2013,52(3):16831696.
[3]SHOU Wenchi, WANG Jun, WANG Xiangyu A comparative review of building information modelling implementation in building and infrastructure industries[J]. Archives of Computational Methods in Engineering, 2015, 22(2):291308.
[4]GANPATRAO NG, GHOSH JK Information extraction from topographic map using colour and shape analysis[J]. Sadhana, 2014, 39(5):10951117.
[5]GRONT P, SIVIC J, OBOZINSKI G, et al Learning and calibrating perlocation classifiers for visual place recognition[J]. International Journal of Computer Vision, 2016, 118(3):319336.
[6]BALZ T, LIAO M S Building damage detection using post seismic high resolution SAR satellite data[J]. International Journal of Remote Sensing, 2010,31(13):33693391
[7]STEINHAGE V, BEHLEY J, MEISEL S et al Reconstruction by components for automated updating of 3D city models[J]. Applied Geomatics, 2013, 5(4):285298
[8]WU Hao, CHENG Zhiping, SHI Wenzhong, et al An objectbased image analysis for building seismic vulnerability assessment using high resolution remote sensing imagery[J]. Natural Hazards, 2014, 71(1):151174.
[9]李松霖,范海生,陈秀万 基于特征线匹配的城市建筑物识别方法研究[J]. 遥感技术与应用, 2012, 27(2):190196.
LI Songlin, FAN Haisheng, CHEN Xiuwan Research of urban building recognition method based on line features matching[J]. Remote Sensing Technology and Application, 2012, 27(2):190196.
[10]张永梅,季艳,马礼,等 遥感图像建筑物识别及变化检测方法[J]. 电子学报, 2014, 42(4): 653657 ZHANG Yongmei, JI Yan, MA Li, et al A recognition and change detection method for building sin remote sensing images[J]. Acta Electronica Sinica, 2014, 42(4): 653657.
[11]宋阳,李昌华,马宗方,等 aIB算法在古建筑信息模型特征提取中的应用与研究[J]. 西安建筑科技大学学报(自然科学版),2016,48(4):606609
SONG Yang, LI Changhua, MA Zongfang, et al Application and research of aIB algorithm in ancient building information model feature extraction[J]. JXi′an Univ of Arch& Tech (Natural Science Edition), 2016,48(4):606609.
[12]樊舒迪,胡月明,刘振华 一种新的面向对象城市建筑物信息提取方法研究[J].华南师范大学学报(自然科学版), 2015,47(6):9197
FAN Shudi, HU Yueming, LIU Zhenhua Research of information extraction of city building based on a new objectoriented method[J], Journal of South China Normal University (Natural Science Edition), 2015,47(6): 9197.

备注/Memo

备注/Memo:
收稿日期:2016-04-27 修改稿日期:2017-08-11
基金项目:陕西省自然科学基础研究计划项目(2016JM6079),陕西省教育厅专项科研项目(14JK1429)
第一作者:王燕妮(1975-)女,博士,副教授,研究领域为信号与信息处理.E-mail:wangyn02@126.com

更新日期/Last Update: 2017-11-10