[1]史嘉梁,王朋.钢筋混凝土带翼缘剪力墙破坏机理研究[J].西安建筑科技大学学报(自然科学版),2017,49(06):860-867.[doi:10.15986/j.10067930201706014]
 SHI Jialiang,WANG Peng.Study on failure mechanism of reinforced concrete shear walls with flange[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(06):860-867.[doi:10.15986/j.10067930201706014]
点击复制

钢筋混凝土带翼缘剪力墙破坏机理研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
49
期数:
2017年06期
页码:
860-867
栏目:
出版日期:
2017-12-31

文章信息/Info

Title:
Study on failure mechanism of reinforced concrete shear walls with flange
文章编号:
1006-7930(2017)06-0860-08
作者:
史嘉梁12王朋1
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055;2.格拉斯哥大学 工程与科学学院,英国 格拉斯哥 G12 8QQ)
Author(s):
SHI Jialiang12 WANG Peng1
(1.School of Civil Engineering, Xi′an Univ. of Arch. & Tech., Xi′an 710055, China; 2.College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, The United Kingdom)
关键词:
带翼缘剪力墙受力机理数值模拟应力应变分布剪力滞后
Keywords:
shear walls with flange stress mechanism numerical simulation stress and strain distribution shear lag effect
分类号:
TU375
DOI:
10.15986/j.10067930201706014
文献标志码:
A
摘要:
采用有限元方法对钢筋混凝土(RC)带翼缘剪力墙的全过程受力状态进行了数值模拟,在验证模型有效性的基础上,分析了带翼缘剪力墙在地震荷载作用下的受力机理和破坏过程,并分别就翼缘受压和翼缘受拉方向,研究了加载过程中钢筋和混凝土的应力应变分布规律,讨论了翼缘中存在的剪力滞后现象,结果表明:当剪力墙达到极限状态时,试件两侧受力纵筋均能达到屈服,翼缘内混凝土只受拉开裂,受压始终未达到峰值压应力,表明翼缘具有良好的受压性能.翼缘截面内的受拉钢筋和受压混凝土应变均呈非线性分布,翼缘截面存在明显的剪力滞后现象,并且剪滞效应随着加载过程不断加剧.
Abstract:
The stress state in whole loading process of reinforced concrete (RC) shear walls with flange was simulated using the finite element method. Based on the verified model, the stress mechanism and failure process of flanged shear walls under earthquake loading were analyzed. The stress and strain distribution of reinforced bar and concrete during loading were studied for the flange in compression and tension respectively, the shear lag effect in flange was discussed as well. The results indicate that the longitudinal reinforcement on both sides of the specimen can reach the yield when shear walls reach the limit state. The concrete in the flange only cracks in tension, but never reaches the peak stress under compression, which indicates that the flange has good compressive properties. The strain of the tension bar and the compressive concrete is nonlinearly distributed along the flange cross section so the shear lag effect is obvious in the flange, and the shear lag effect aggravates with the loading process.

参考文献/References:

[1]史庆轩, 王斌, 王朋, 等. 双轴加载下RC带翼缘剪力墙抗震性能对比分析[J]. 福州大学学报(自然科学版), 2013, 41(4): 712-716. SHI Qingxuan, WANG Bin, WANG Peng, et al. Comparison and analysis for seismic performance of RC shear wall with flanges under biaxial loading[J]. Journal of Fuzhou University( Natural Science Edition), 2013, 41(4): 712-716. [2]OESTERLE R G, ARISTIZABAL.Ochoa J D. Earthquake resistant structural walls-tests of isolated walls(2) [R]. Portland, Portland Cement Association, 1979. [3]GOODSIR W J. The design of coupled fram-wall structures for seismic actions [R]. New Zealand, University ofCauterbury, 1979. [4]SITTIPUNT C, WOOD S L. Influence of web reinforcement on the cyclic response of structural walls [J]. ACI Structural Journal, 1995, 92 (6): 1-12. [5]THOMSEN J H IV, WALLACE, J W. Displacement-based design of slender reinforced concrete structural walls-experimental verification [J]. Journal of Structure Engineering, 2004, 130: 618-630. [6]PALERMO D, VECCHIO F J. Behavior of three-dimensional reinforced concrete structural walls [J]. ACI Structural Journal, 2001, 99 (1): 81-89. [7]傅剑平, 汪锦林, 白邵良. 工字形、T形钢筋混凝土剪力墙抗震抗剪试验[J]. 重庆建筑大学学报, 2008, 30(3): 21-26. FU Jianping, WANG Jinlin, BAI Shaoliang. The seismic shear capacity of I-shaped and T-shaped reinforced concrete structural walls[J]. Journal of Chongqing Jianzhu University, 2008, 30(3): 21-26. [8]ZHANG P L, LI Q N. Cyclic loading test of T-shaped mid rise shear wall [J]. The Structural Design of Tall and Special Buildings, 2013, 22(10): 759-769. [9]史庆轩,王斌,何伟锋,等. 带翼缘钢筋混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2017, 38(1): 106-115. SHI Qingxuan, WANG Bin, HE Weifeng, et al. Experimental research on seismic behavior of reinforced concrete shear walls with flange[J]. Journal of Building Structures, 2017, 38(1): 106-115. [10]SHI Q X, WANG B. Simplified calculation of effective flange width for shear walls with flange[J]. The Structural Design of Tall and Special Buildings, 2016, 25(12): 558-577. [11]SANEZ L P. Discussion of equation for the stress-strain curve of concrete by desayi and krishnan[J]. ACI Structural Journal, 1964, 61(9): 1229-1235. [12]沈聚敏,王传志,江见鲸. 钢筋混凝土有限元与板壳极限分析[M]. 北京: 清华大学出版社, 1993. SHEN Jumin, WANG Chuanzhi, JIANG Jianjing. Finite element and plate-shell limit analysis of reinforced concrete[J]. Beijing: Tsinghua University Press, 1993. [13]聂建国,王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59-67,82. NIE Jianguo, WANG Yuhang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering Mechanics, 2013, 30(4): 59-67,82. [14]王宇航. 曲线梁桥钢管混凝土桥墩的扭转效应研究[D]. 北京:清华大学,2013. WANG Yuhang. Study on torsion effect in concrete filled steel tube piers of curved girder briges[D]. Beijing: Tsinghua University, 2013. [15]Model Code 90, CEB-FIP[S]. Lausanne: Mai, 1993.

备注/Memo

备注/Memo:
收稿日期:2017-05-10 修改稿日期:2017-11-10 基金项目:国家自然科学基金(51608434;51478382);陕西省自然科学基础研究计划(2016JQ5082);陕西省高校科协青年人才托举计划(20160219) 第一作者:史嘉梁(1992-),男,硕士,主要从事土木工程相关的研究. E-mail:jialiangshi602@gmial.com
更新日期/Last Update: 2018-02-12