[1]张紫祥,刘爱荣,钟子林.集中荷载作用下FRP圆弧拱的面内非线性弹性失稳研究[J].西安建筑科技大学学报(自然科学版),2019,51(02):230-234,258.[doi:10.15986/j.1006-7930.2019.02.012]
 ZHANG ZixiangLIU Airong,ZHONG Zilin.Nonlinear in-plane elastic buckling of FRP circular arch subjected to a central concentrated load[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(02):230-234,258.[doi:10.15986/j.1006-7930.2019.02.012]
点击复制

集中荷载作用下FRP圆弧拱的面内非线性弹性失稳研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年02期
页码:
230-234,258
栏目:
出版日期:
2019-04-28

文章信息/Info

Title:
Nonlinear in-plane elastic buckling of FRP circular arch subjected to a central concentrated load
文章编号:
1006-7930(2019)02-0230-05
作者:
张紫祥刘爱荣钟子林
(广州大学-淡江大学工程结构灾害与控制联合研究中心, 广东 广州 510006 )
Author(s):
ZHANG ZixiangLIU Airong ZHONG Zilin
(Guangzhou University-Tamkang University Joint Research Centre for Engineering Structure Disaster Prevention and Control, Guangzhou University, Guangzhou 51006, China)
关键词:
FRP圆弧拱面内非线性屈曲解析解
Keywords:
FRP Circular arches In-plane Nonlinear buckling Theoretical solution
分类号:
TU111.2
DOI:
10.15986/j.1006-7930.2019.02.012
文献标志码:
A
摘要:
本文开展了集中荷载作用下FRP圆弧拱的面内弹性失稳理论研究,基于能量变分原理建立了拱的非线性平衡方程,提出了FRP拱修正长细比计算公式,推导了拱失稳临界荷载解析解。通过有限元数值解验证了理论公式的正确性,着重分析了铺层角度、铺层厚度及矢跨比等设计参数对FRP拱失稳临界荷载的影响。研究结果表明,铺层方向显著影响拱的失稳临界荷载;对于单种角度铺层的截面,保证铺层总厚度不变条件下,仅增加铺层数量并不会引起失稳临界荷载量值的变化;拱矢跨比在1/10~1/3范围内变化时,失稳临界荷载随着矢跨比的增大而增大,且随着矢跨比的增加,增长速率逐渐下降。
Abstract:
This paper presents an analytical investigation on in-plane elastic buckling of FRP arches subjected to a central concentrated load. The nonlinear buckling equilibrium equation is established based on energy variation principle. A new slenderness ratio formula is further proposed and the theoretical buckling load of FRP circular shallow fixed arch is derived, consequently. Numerical simulation and additional experiment are implemented to verify the accuracy of the analytical solutions derived in this context. A parametric study is then conducted to analyze the effect of ply orientation, laminated thickness, and the rise-span ratio on in-plane bucking critical load for laminated fixed circular shallow arch. It is found that pavement condition significantly impacts the buckling critical load. Increasing the number of layer s with single angle only will not change the value of critical load, with the thickness of laminated arch being constant. When the rise-span ratio varies from 1/10 to 1/3, the critical load of instability increases with the increase of span ratio, whereas the growth rate decreases with the increase of span ratio

参考文献/References:

参考文献 References[1] Myers G J. Composite Structure Design[M]. John Wiley & Sons, Inc., 1978.4.[2] SOBRINO J A, PULIDO M. Towards advanced composite material footbridges[J]. Structural engineering international, 2002, 12(2): 84-86.[3] ŁUKASZ Pyrzowski, MISKIEWICZ M. Modern GFRP Composite Footbridges[C]// Environmental Engineering. 10th International Conference, Wilno: Vilnius Gediminas Technical University, 2017, s.1-8. [4] USHAKOV A, KLENIN Y, OZEROV S. Development of modular arched bridge design[C]// Proceedings of 5th Inter national Engineering and Construction Conference (IECC 5). USA, CA, Irvine, 2008; 95-101.[5] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36.YE L, FENG P. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal, 2006, 39(3):24-36.[6] 冯鹏. 复合材料在土木工程中的发展与应用[J]. 玻璃钢/复合材料, 2014(9):99-104.FENG P. Development and Application of Composite in Civil Engineering[J]. FRP / CM, 2014(9):99-104.[7] 冯鹏, 叶列平, 金飞飞等. FRP桥梁结构的受力性能与设计方法[J]. 玻璃钢/复合材料, 2011(5):12-19.FENG P, YE L, JIN F, et al. Mechanical Behaviors and Design Methods of FRP Bridge Structures[J]. FRP/CM, 2011(5):12-19.[8] LUU A T, KIM N I, LEE J. Bending and buckling of general laminated curved beams using NURBS-based isogeometric analysis[J]. European Journal of Mechanics-A/Solids, 2015, 54: 218-231.[9] FRATERNALI F, SPADEA S, ASCIONE L. Buckling behavior of curved composite beams with different elastic response in tension and compression[J]. Composite Structures, 2013, 100: 280-289.[10] SONAWANE M. Buckling analysis of singly curved shallow bi-layered arch under concentrated loading[D]. State of Texas: Texas A & M University, 2010.[11] KIM D, Chaudhuri R A. Postbuckling behavior of symmetrically laminated thin shallow circular arches[J]. Composite Structures, 2009, 87(1): 101-108[12] LIU A, BRADFORD M A, PI Y L. In-plane nonlinear multiple equilibria and switches of equilibria of pinned–fixed arches under an arbitrary radial concentrated load[J]. Archive of Applied Mechanics, 2017, 87(11): 1909-1928.[13] PI Y L, BRADFORD M A, LIU A. Nonlinear Equilibrium and Buckling of Fixed Shallow Arches Subjected to an Arbitrary Radial Concentrated Load[J]. International Journal of Structural Stability & Dynamics, 2017, 17(8):1750082.[14] LIU A, YANG Z, LU H, et al. Experimental and analytical investigation on the in-plane dynamic instability of arches owing to parametric resonance[J]. Journal of Vibration & Control, 2017(1):107754631772621.[15] Liu A, Lu H, Pi Y L, et al. Out-of-Plane Parametric Resonance of Arches Under an In-Plane Central Harmonic Load[C]//International Symposium on Environmental Vibration and Transportation Geodynamics. Springer, Singapore, 2016: 45-51.[16] LIU A, LU H, PI Y L, et al. Out-of-Plane Parametric Resonance of Arches Under an In-Plane Central Harmonic Load[M]// Environmental Vibrations and Transportation Geodynamics. Singapore:Springer 2018:45-51.[17] LIU A, LU H, FU J, et al. Lateral-torsional buckling of fixed circular arches having a thin-walled section under a central concentrated load[J]. Thin-Walled Structures, 2017, 118:46-55.[18] LIU A, LU H, FU J, et al. Lateral-Torsional Buckling of Circular Steel Arches under Arbitrary Radial Concentrated Load[J]. Journal of Structural Engineering, 2017, 143(9):04017129-1~04017129-13.[19] DENG J, LIU A, HUANG P, et al. Interfacial mechanical behaviors of RC beams strengthened with FRP[J]. Structural Engineering & Mechanics, 2016, 58(3):577-596.[20] 刘爱荣, 李晶, 黄永辉. 拱的静动力稳定性研究进展[J]. 广州大学学报(自然科学版), 2016, 15(5):1-12.LIU A, LI J, HUANG Y, et al. Research progress on static and dynamic stability of arches[J]. Journal of Guangzhou University (Natural Science Edition), 2016, 15(5):1-12.[21] HUANG Y, YANG Z, LIU A, et al. Nonlinear Buckling Analysis of Functionally Graded Graphene Reinforced Composite Shallow Arches with Elastic Rotational Constraints under Uniform Radial Load[J]. Materials, 2018, 11(6): 910.[22] Gibson R F. Principles of Composite Material Mechanics. Fourth ed. CRC Press: Taylor and Francis; 2011.

相似文献/References:

[1]惠宽堂,李 瑾,樊军建,等.I形截面圆弧拱弹性弯扭屈曲研究[J].西安建筑科技大学学报(自然科学版),2013,45(04):520.[doi:10.15986/j.1006-7930.2013.04.010]
 XI Kuan-tang,LI Jin,FAN Jun-jian,et al.Elastic flexural-torsional buckling load of I-Section circular arches[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(02):520.[doi:10.15986/j.1006-7930.2013.04.010]

备注/Memo

备注/Memo:
收稿日期: 2018-10-01 修改日期:2019-03-22基金项目:国家自然科学基金项目 (No. 51878188), 羊城学者首席科学家项目 (1201541551)第一作者:张紫祥(1994-),男,博士生,主要从事复合材料拱的稳定性研究. E-mail:zhangzixiang@e.gzhu.edu.cn通讯作者:刘爱荣(1972-),女,教授,主要从事桥梁结构防灾减灾研究. E-mail:liu-a-r@163.com
更新日期/Last Update: 2019-05-23