[1]李安桂,黎宇伟,张 莹,等.基于鲁地拉水电站主变室的SF6泄漏特性研究[J].西安建筑科技大学学报(自然科学版),2019,51(02):268-0274,0287.[doi:10.15986/j.1006-7930.2019.02.017]
 LI Angui,LI Yuwei,ZHANG Ying,et al.Study on the leakage characteristics of SF6 based on main transformer room of Ludila Hydropower station[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(02):268-0274,0287.[doi:10.15986/j.1006-7930.2019.02.017]
点击复制

基于鲁地拉水电站主变室的SF6泄漏特性研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年02期
页码:
268-0274,0287
栏目:
出版日期:
2019-04-28

文章信息/Info

Title:
Study on the leakage characteristics of SF6 based on main transformer room of Ludila Hydropower station
文章编号:
1006-7930(2019)02-0268-07
作者:
李安桂黎宇伟张 莹王龙涛
(西安建筑科技大学 环境与市政工程学院,陕西 西安 710055)
Author(s):
LI AnguiLI YuweiZHANG Ying WANG Longtao
(School of Environment and Municipal EngineeringXian Univ. of Arch. & Tech. Xi an 710055,China)
关键词:
重气扩散模型试验六氟化硫受限空间
Keywords:
heavy gas dispersionmodel tesatSF6confined space
分类号:
U 455.4
DOI:
10.15986/j.1006-7930.2019.02.017
文献标志码:
A
摘要:
以六氟化硫作为研究气体,以鲁地拉水电站主变室为参考对象制作试验台,通过小室试验分析了受限空间内六氟化硫在自然填充状态下不同泄漏量及不同泄漏位置时的浓度变化及分布规律,研究表明:当泄漏点位置在体源上表面中心时,受限空间内六氟化硫浓度随时间的变化过程可分为两个阶段:快速上升阶段和缓慢上升阶段,且泄漏量越大,近地面处的六氟化硫浓度越高,分层特性越明显;当泄漏点位于体源上表面,但是偏离中心点时,受限空间内两侧的六氟化硫浓度值会相差较大,靠近泄漏口的一侧浓度较高,而远离泄漏口的一侧浓度较低;当泄漏位置位于体源侧边时,受限空间内的六氟化硫浓度分布会呈现底层浓度高,扩散高度低的特点,且泄漏位置越低,底层的浓度越高。
Abstract:
Using SF6 as research gas, the test bench was made with the main transformer room of Ludila Hydropower Station as the reference object. The concentration variation and distribution of SF6 in confined space under different leakage amount and different leakage positions in natural filling state are analyzed.and the experimental results show that When the leak point is located at the center of the upper surface of the body source, the concentration variation of SF6 in the confined space can be divided into two stages: the fast rising phase and the slow rising phase, and the larger the leakage, The higher the concentration of SF 6 near the ground, the more obvious the stratification characteristics;When the leak point is located on the upper surface of the body source, but the deviation from the center point , the concentration of SF 6 on both sides of the confined space will be different, the concentration near the leak port is higher, and the side far from the leak port is lower; When the leakage position is located on the side of the body source, the concentration distribution of SF6 in the confined space will be characterized by high concentr ation of the bottom layer and low diffusion height, and the lower the leakage position, the higher the concentration of the bottom layer

参考文献/References:

References

[1] TANG J.Partial discharge recognition through an anal ysis of SF6 decomposition products part l:decomposition characteristics of SF6 under four different partial discharges[J].IEEE Transactions on Dielectrics and Electrical Insulation,2012.

[2] 王先培,李晨,赵宇等.基于紫外光谱SF6电气设备内S02组分在线监测法[J].高电压技术,2015,41(1):152-158.

WANG X , LI C , ZHAO Y , et al. Online detection methodology of decomposition Product SO 2 in SF6 ele ctrical equipment based on ultraviolet spectroscopy[J]. High Voltage Engineering, 2015, 41(1):1 52-158.

[3] RICCIARDI L,Prévost C,BOUILLOUX L,et al.Experimental and numerical study of heavy gas dispersion in a ventilated room[J].Journal of Hazardous Materials,2008,152(2):493-505.

[4] 丁慧心,肖益民,周铁成.地下水电站出线竖井中SF6泄漏扩散的数值模拟分析[J].制冷与空调:四川, 2016, 30(6):623-629.

HUI Xin D ,YI M in X.Numerical simulation analysis of sf6 diffusion in the shaft of underground Hydorpower station[J]. Refrigeration and Air -conditioning,2016, 30(6):623-629.

[5]CHAVEZ M,HAJRA B,STATHOPOULOS T.Near-field pollutant dispesion in the built environment by CFD and wind tunnel simulations[J].Journal of Wind Engineering & Industrial Aerodynamics,2011,99?(4):330-339.

[6]SANTOS J M,MAVROIDIS I,NCReis. experimentalinvestigation of outdoor and i ndoor mean concentrations and concentration fluctuations of pollutants[J] . Atmospheric Environment,2011,45(36):6534-6545.

[7] Zhirong Wang,Yuanyuan Hu,Juncheng Jiang.Numerical investigation of leaking and dispersion of carbon dioxide indoor under ventilation condition[J]. Energy&Buildings, 2013,66(6):461-466.

[8] 秦颂,董华,张启波等.重气连续泄漏扩散的盐水模拟实验[J],环境化学,2007,26(5):666-670

SONG Qin, Salt water simulation experiment for dispersion of continuous leaked heavy gas[J]. ?Environmental Chemistry,2007,26(5)666-670

[9] XING Ji,LIU Zhenyi,HUANG Ping,et al.CFD validati on of scaling rules for reduced-scale field releases of carbon dioxide[J]. Applied Energy,2014,115(4):525-530.

[10] Zhang Qiping, M A Dexian. Effect of heavy gas of dangerous material in diffusion process[J].Journal of Beijing University of Chemical Technology, 1998,2 5(3): 86-90.

[11]刘佳.液氯泄漏扩散数值模拟[D].辽宁工程技术大学, 2012.

LIU Jia.Studies on the numerical simulation of chlorine leakage and diffusion[D]. Liaoning Technical Univers ity,2012.

[12]丁宗果,何天祺,刘勇等.某水电站GIS电缆层SF6重气扩散的数值模拟[J],建筑热能通风空调, 2008(1):68-71.

DING.Zongguo. The Numerical Simulation Study of the Pervasion about the SF6 Heavy Gas in the GIS Cable La yer of the Hydroelectric Power Station[J].Building Energy & Environment, 2008(1): 68-71.

[13] SIDDIQUI M, JAYANTI S , SWAMINATHAN T .CFD analysis of dense gas dispersion in indoor environment forrisk assessment and risk mitigation[J]. Journal of Hazardous Materials,2012,s209-210(1):177-185.

[14]RICCIARDI L,C Prévost,BOUILLOUX L,SESTIERCARLIN R.Experimental and numerical study of heavy gas dispersion in a ventilated room[J].Journal of Hazardous Materials,2008,152(2):493-505.

[15]DONG Longxiang,ZUO Hongchao,LIANG Hu.Simulation of heavy gas dispe-rsion in a large i ndoor space using CFD model[J]. Joumal of Loss Preve ntion in the Process Industries,2009,46:1-12.

[16] 胡园园,王志荣,蒋军成.自然通风条件下室内CO2扩散浓度变化的数值模拟[J]. 南京工业大学学报(自然科学版), 2012, 34(3).

HU Yuanyuan , WANG Zhirong, JIANG Juncheng. Numerical simulation of indoor concentration change of carbon dioxide dispersion under natural ventilation condition[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2012, 26(5):693-696.

[17] HANNA S, BRITTER R, ARGENTA E, et al. The Jack Rabbit chlorine release experiments: Implications of dense gas removal from a depression and downwind concentrations[J]. Journal of Hazardous Materials, 2012, 213-214(3): 406-412.

[18]周宁,滕欣,袁雄军等.基于可视化理论的重气泄漏扩散研究[J],环境工程,2016,34 (10):147-152.

ZHOU Ning, TENG Xin, YUAN Xiongjun, , et al. R esearch of heavy gas leakage and diffusion based on the visualization theory[J].?Environmental Engineering, 2016,34 (10):147-152 .

[19]周超,王志荣,蒋军成.室内空间重气泄漏扩散过程的影响因素[J].南京工业大学学报(自然科学版).2011,33(4):88-92.

相似文献/References:

[1]赵 康,石 亮,罗嗣海.一种便捷强夯模型试验装置的设计及应用[J].西安建筑科技大学学报(自然科学版),2012,44(02):224.[doi:10.15986/j.1006-7930.2012.02.013]
 ZHAO Kang,SHI Liang,LUO Si-hai.The design of a convenient device for dynamic compaction model test and its application[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(02):224.[doi:10.15986/j.1006-7930.2012.02.013]
[2]冀 伟,刘世忠,蔺鹏臻.等截面波形钢腹板连续箱梁竖向基频的参数研究[J].西安建筑科技大学学报(自然科学版),2012,44(04):468.[doi:10.15986/j.1006-7930.2012.04.003]
 JI Wei,LIU Shi-zhong,LIN Peng-zhen.Study on dynamic characteristics parameters of equal section composite box girder with corrugated steel webs[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(02):468.[doi:10.15986/j.1006-7930.2012.04.003]
[3]邓军涛,王娟娟,门玉明.锚杆格构梁模型试验研究[J].西安建筑科技大学学报(自然科学版),2014,46(04):542.[doi:10.15986/j.1006-7930.2014.04.015]
 Deng Juntao,WANG Juanjuan,et al.Study on the model test of lattice beam anchor[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(02):542.[doi:10.15986/j.1006-7930.2014.04.015]
[4]王江丽,闫增峰,王旭东,等.敦煌莫高窟洞窟自然通风实验研究[J].西安建筑科技大学学报(自然科学版),2015,47(05):712.[doi:DOI:10.15986/j.1006-7930.2015.05.018]
 WANG Jiangli,YAN Zengfeng,WANG Xudong,et al.Experimental research on natural ventilation of the Mogao Grottoesin Dunhuang[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(02):712.[doi:DOI:10.15986/j.1006-7930.2015.05.018]
[5]邹金杰,赵宇,李姣阳,等.黏土浅埋隧道开挖面稳定性模型试验研究[J].西安建筑科技大学学报(自然科学版),2017,49(04):478.[doi:10.15986/j.1006-7930.2017.04.003]
 ZOU Jinjie,ZHAO Yu,LI Jiaoyang,et al.Model test study of the face stability of the shallow tunnel in the clay[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(02):478.[doi:10.15986/j.1006-7930.2017.04.003]
[6]段旭,董琪,门玉明,等.黄土挖填方场地中桩筏基础受力变形状态研究[J].西安建筑科技大学学报(自然科学版),2018,50(03):373.[doi:10.15986/j.1006-7930.2018.03.010]
 DUAN Xu,DONG Qi,MEN Yuming,et al.Study on mechanism of deformation and destruction for piled raft foundation in loess areas with excavatedfilled[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(02):373.[doi:10.15986/j.1006-7930.2018.03.010]
[7]李安桂,成劲光,高然.基于超细水雾作用下的地铁站台空间火灾烟气温度特性[J].西安建筑科技大学学报(自然科学版),2019,51(03):426.[doi:10.15986/j.1006-7930.2019.03.018]
 LI Angui,CHENG Jinguang,GAO Ran.The temperature characteristics of fire smoke in subway platform spacebased on ultrafine-water mist[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(02):426.[doi:10.15986/j.1006-7930.2019.03.018]

备注/Memo

备注/Memo:
收稿日期:2018-03-19 修改稿日期:2019-03-11基金项目:中国博士后科学基金(2015M582626);陕西省教育厅科学研究计划项目(16JK1431)第一作者:李安桂(1963-),男,山东寿光人,教授,博士生导师,主要从事建筑通风空调及建筑节能研究。E-mail:liag@xauat.edu.cn
更新日期/Last Update: 2019-05-23