[1]郭春霞,李银山,孙永涛,等.任意荷载作用下梁-柱的新型实用算法[J].西安建筑科技大学学报(自然科学版),2023,55(05):652-660.[doi:10.15986/j.1006-7930.2023.05.003]
 GUO Chunxia,LI Yinshan,SUN Yongtao,et al.A new practical algorithm for beamcolumn under arbitrary load[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(05):652-660.[doi:10.15986/j.1006-7930.2023.05.003]
点击复制

任意荷载作用下梁-柱的新型实用算法()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年05期
页码:
652-660
栏目:
出版日期:
2023-10-28

文章信息/Info

Title:
A new practical algorithm for beamcolumn under arbitrary load
文章编号:
1006-7930(2023)05-0652-09
作者:
郭春霞1李银山2孙永涛3李子瑞2
(1.西安建筑科技大学 理学院,陕西 西安 710055; 2.河北工业大学 机械工程学院,天津 300401; 3.天津大学 机械工程学院,天津 300072)
Author(s):
GUO Chunxia1 LI Yinshan2 SUN Yongtao3 LI Zirui2
(1.School of Science, Xi′an Univ. of Arch. & Tech., Xi′an 710055, China; 2.School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; 3.School of Mechanical Engineering, Tianjin University, Tianjin 300072, China)
关键词:
渐进积分法梁-柱最大挠度最大转角最大弯矩
Keywords:
progressive integral method beam-column maximum deflection maximum angle maximum bending moment
分类号:
TU391;O341
DOI:
10.15986/j.1006-7930.2023.05.003
文献标志码:
A
摘要:
采用渐进积分法研究了简支梁-柱分别在横向分布力、横向集中力和力偶作用下的弯曲问题.构造了各种荷载作用下梁柱的四阶微分迭代方程和边界条件.首先选取简支梁只有横向荷载的挠曲线作为梁柱的初函数,然后将初函数代入梁-柱的四阶微分迭代方程进行积分,得到下一次迭代挠度函数,依次进行迭代积分运算.编程计算出了用轴力放大系数表示的最大挠度、最大转角和最大弯矩的简单多项式解析函数.经过六次迭代,与精确解相比,当梁-柱所受的轴向力是欧拉临界力的1/2以内时,误差可以控制在1%以内,达到了令人满意的工程精度要求.
Abstract:
The bending of simply supported beam-column under continuous transverse load, transverse concentrated load and coupling is studied by using the method of progressive integration. The fourth order differential iterative equations and boundary conditions of beam-column under various loads are constructed. Firstly, the deflection curve of simply supported beam with only transverse load is selected as the initial function of beam-column. Then, the initial function is substituted into the fourthorder differential iterative equation of beam-column for integration, and the next iterative deflection function is obtained, and the iterative integration operation is carried out in turn. Simple polynomial analytic functions of maximum deflection, maximum angle and maximum bending moment expressed by amplification coefficients are calculated. After six iterations, compared with the exact solution, the error can be controlled within 1% when the axial force is less than half of the Euler critical force, which achieves satisfactory engineering accuracy requirements.

参考文献/References:

[1]TIMOSHENKO S P,GERE J M.Theory of Elastic Stability[M]. New York:McGraw-Hill,1961.

[2]徐腾飞,向天宇,赵人达.变截面EulerBernoulli梁在轴力作用下固有振动的级数解[J].振动与冲击,2007, 11:99-101.
  XU Tengfei, XIANG Tianyu, ZHAO Renda. Series solution of natural vibration of the variable crosssection EulerBernoulli beam under axial force[J].Journal of vibration and shock, 2007,11:99-101.
[3]曹卫平,赵呈,葛欣,等.砂土中水平受荷斜桩性状模型试验研究[J].西安建筑科技大学学报(自然科学版),2020,52(2):168-176.
  CAO Weiping,ZHAO Cheng,GE Xin,et al. Model tests on behaviors of horizontally loaded single batter piles in sand[J]. J. of Xi′an Univ. of Arch. & Tech.(Natural Science Edition) ,2020,52(2):168-176.
[4]邢静忠,柳春图.轴向力作用下埋设于线弹性土壤中的悬跨管道振动分析[J].工程力学,2010,27(3):193-197.
  XING Jingzhong, LIU Chuntu. Vibration analysis of spanning pipeline buried in linear elastic soil with axial force[J].Engineering Mechanics, 2010,27(3):193-197.
[5]RUSSELL S G. Informal numerical methods for generalized beam-columnproblems[C].55thAIAA/ASMe/ASCE/AHS/ SC Structures, Structural Dynamics, and Materials Conference. National Harbor, Maryland,2014: 0160.
[6]陆健炜,鲍四元,沈峰.阶梯柱屈曲的改进Fourier级数分析[J].应用数学和力学,2021,42(12):1229-1237.
  LU Jianwei, BAO Siyuan, SHEN Feng. Buckling analysis of stepped columns based on the improved Fourier series method[J]. Applied Mathematics and Mechanics,2021,42(12):1229-1237.
[7]KARMAN T V,BIOT M A.Mathematical methods in engineering[M]. New York: McGraw-Hill Book Company,Inc., 1940.
[8]刘鸿文.高等材料力学[M]. 北京:高等教育出版社,1985.
  LIU Hongwen. Advanced material mechanics [M]. Beijing: Higher Education Press,1985.
[9]HILDEBRAND, FRANCIS B. Advanced calculus for applications[M]. 2nd ed. Prentice Hall Publishers, 1976.
[10]陈林靖,余其凤,戴自航.纵横弯曲桩计算的综合刚度和双参数法的有限差分解[J].岩石力学与工程学报, 2016, 35(3): 613-622.
  CHEN Linjing,YU Qifeng,DAI Zihang. Finite difference solution based on composite stiffness and bi-parameter method for calculating vertical and horizontal bending piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 613-622.
[11]黄文君,高德利.受井眼约束带接头管柱的纵横弯曲分析[J].西南石油大学学报,2015,37(5):152-158.
  HUANG Wenjun,GAO Deli.Deflection analysis of a tubular string with connectors constrained in a wellbore[J].Journal of Southwest Petroleum University,2015,37(5):152-158.
[12]洪迪峰,唐雪平,苏义脑,等.非连续性旋转导向钻具组合的广义纵横弯曲法[J].石油学报, 2014, 35(3): 543-550.
  HONG Difeng,TANG Xueping,SU Yinao,et al.Generalized beamcolumn method for non-continuous rotary steering drilling of bottomhole assembly[J].Acta Petrolei Sinica,2014,35(3):543-550.
[13]蔡铭,毛伙南,郭金基,等.幕墙支撑杆的纵横弯曲计算和稳定性分析[J].中山大学学报, 2007, 46(2): 16-19.
  CAI Ming,MAO huonan,GUO Jinji,et al.Vertical and horizontal bending calculation and stability analysis of curtain wall strut bar[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2007,46(2):16-19.
[14]MOHRI F, BOUZERIRA C, POTIERFERRY M. Lateral buckling of thin-walled beam-column elements under combined axial and bending loads[J]. ThinWalled Structures, 2008, 46(3): 290-302.
[15]DADO M, ALSADDER S. A new technique for large deflection analysis of non-prismatic cantilever beams. Mech Res Commun 2005,32(6):692-703.
[16]ARBOLEDAMONSALVE L G, ZAPATAMEDINA D G, ARISTIZABAL-OCHOA J D. Timoshenko beamcolumn with generalized end conditions on elastic foundation: Dynamic-stiffness matrix and load vector[J]. Journal of Sound and Vibration, 2008, 310(4/5): 1057-1079.
[17]HATAMI M, VAHDANI D D, GANJI D S. Deflection prediction of a cantilever beam subjected to static co-planar loading by analytical methods[J]. HBRC Journal, 2014,10(2):191-197.
[18]李晓姣. 梁力学问题的辛本征值分析方法[D].大连:大连理工大学,2018.
  LI Xiaojiao. Symplectic eigenvalue analysis method for mechanical problems of beams[D].Dalian:Dalian University of Technology,2018.
[19]AREIZAHURTADO M, ARISTIZBALOCHOA J D. Largedeflection analysis of prismatic and tapered beam-columns using the Differential Transform Method[J].Structures. 2020, 28: 923-932.
[20]李银山.材料力学(上册)[M].北京:人民交通出版社,2014.
  LI Yinshan. Mechanics materials(Vol1)[M]. Beijing: China Communications Press, 2014.
[21]李银山.材料力学(下册)[M].北京:人民交通出版社,2015.
  LI Yinshan. Mechanics materials(Vol.2) [M]. Beijing: China Communications Press, 2015.
[22]李银山,孙凯,贾佩星.复杂荷载下多层刚架的快速解析求解[J].工程力学,2017,34:11-18.
  LI Yinshan, SUN Kai, JIA Peixing. A fast analytical solution for multi-story frames under complicated loads[J].Engineering Mechanics, 2017,34:11-18.

备注/Memo

备注/Memo:
收稿日期:2022-04-10修回日期:2023-08-15
基金项目:国家自然科学基金资助项目(12072222)
第一作者:郭春霞(1983—),女,博士生,讲师,主要研究结构动力学理论. E-mail:chunxiaguo@xauateducn
通信作者:李银山(1961—),男,博士,教授,主要研究非线性动力学与控制. E-mail: 2002104@hebuteducn
更新日期/Last Update: 2023-11-02