[1]胡艳香, 任雪琪, 涂佳辉, 等. 锂渣和橡胶粉掺量对水泥砂浆力学性能影响研究[J].混凝土, 2022(6): 117-120,124.
HU Yanxiang, REN Xueqi, TU Jiahui, et al. Effect of lithium slag and rubber powder on mechanical properties of cement mortar[J]. Concrete, 2022(6): 117-120,124.
[2]刘振正, 谢春磊, 王学营, 等. 稻壳灰的制备及其对地聚物力学性能的影响[J]. 硅酸盐通报, 2020, 39(12): 3881-3888.
LIU Zhenzheng, XIE Chunlei, WANG Xueyin, et al. Preparation of rice husk ash and its effect on mechanical properties of geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12):3881-3888.
[3]王维红, 景何仿, 李新睿, 等. 高性能混凝土热工性能及耐高温性能试验研究[J]. 混凝土, 2021(9): 94-97.
WANG Weihong, JING Hefang, LI Xinrui, et al. Experimental study on thermal performance and high temperature resistance performance of high performance concrete[J]. Concrete, 2021(9): 94-97.
[4]汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
WANG Zhiwen, LI Bixiong. Research progress on application of rice husk ash in cement and concrete[J]. Materials Reports, 2020, 34(9): 9003-9011.
[5]何凌侠, 尹健, 田冬梅, 等. 稻壳灰对活性粉末混凝土强度的影响[J]. 湘潭大学自然科学学报, 2016, 38(2): 23-28.
HE Lingxia, YIN Jian, TIAN Dongmei, et al. Effect of rice husk ash on the strength of reactive powder concrete[J]. 2016, 38(2): 23-28.
[6]中华人民共和国国家质量监督检验检疫总局. 通用硅酸盐水泥: GB175—2007[S]. 北京:中国标准出版社, 2007.
General Administration of Quality Supervision,Inspection and Quarantine of the People′s Ropubilic of China. General Portland Cement: GB175—2007[S]. Beijing: Standards Press of China, 2007.
[7]龚青南, 王德辉. 混凝土碱硅酸反应膨胀预测模型的研究进展[J]. 硅酸盐通报, 2021, 40(12): 3891-3902.
GONG Qingnan, WANG Dehui. Review of expansion prediction models for alkali-silica reaction of concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(12): 3891-3902.
[8]王威, 刘连新, 张毅. 青藏地区集料碱硅酸反应的研究分析[J]. 混凝土, 2019(6): 93-95.
WANG Wei, LIU Lianxin, ZHANG Yi. Analysis of the reaction study of aggregate alkali silicic acid in the Qinghai Tibet area[J]. Concrete, 2019(6): 9395.
[9]ABBAS S, KAZMI S, MUNIR M. Potential of rice husk ash for mitigating the alkali-silica reaction in mortar bars incorporating reactive aggregates[J]. Construction and Building Materials, 2017, 132(Feb.1): 61-70.
[10]RAMEZANIANPOUR A A, ZARRABI K, MAHDIKHANI M. Mitigation of alkali aggregate reaction of concretes containing rice husk ash (RHA) [C]//13th International Conference on AlkaliAggregate Reactions in Concrete. Trondheim, Norway: Department Genie Civil, 2008.
[11]Khan Kaffayatullah, Ullah Muhammad Fahad, Shahzada Khan, et al. Effective use of microsilica extracted from rice husk ash for the production of high-performance and sustainable cement mortar[J]. Construction and Building Materials, 2020, 258: 119589.
[12]LE H T,SIEWERT K,LUDWIG H M. Alkali silica reaction in mortar formulated from selfcompacting high performance concrete containing rice husk ash [J]. Construction and Building Materials, 2015, 88: 10-19.
[13]Mohammad Badrul Ahsan, Zahid Hossain. Effect of particle size of rice husk ash (RHA) in mitigating alkali silica reaction (ASR) in concrete pavement[J]. International Journal of Pavement Research and Technology, 2018, 11:861-866.
[14]ZERBINO R,GIACCIO G,BATIC O R, et al. Alkalisilica reaction in mortars and concretes incorporating natural rice husk ash[J]. Construction and Building Materials, 2012, 36: 796-806.
[15]NICOLE P H, PAULO J, CARASEK H. Effect of silica fume and rice husk ash on alkalisilica reaction[J]. Materials Journal, 2000, 97(4): 486-492.
[16]LE H T, LUDWIG H M. Alkali silica reactivity of rice husk ash in cement paste[J]. Construction and Building Materials, 2020, 243:118-145.
[17]丁建彤, 白银, 蔡跃波. 基于碱硅反应抑制效果的粉煤灰品质评价指标[J]. 建筑材料学报, 2009, 12(2): 239-243,252.
DING Jiantong, BAI Yin, CAI Yuebo. Evaluation of fly ash quality based on lts effectiveness against alkalisilica reaction[J]. Journal of Building Materials, 2009, 12(2): 239-243,252.
[18]马嘉琛, 黄鑫, 仵江涛, 等. 稻壳灰粒径对水泥砂浆性能的影响[J]. 硅酸盐通报, 2019, 38(12): 3878-3883,3904.
MA Jiashen, HUANG Xin, WU Jiangtao, et al. Effect of rice husk ash particle size on the properties of cement mortar[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3878-3883,3904.
[19]王威, 刘连新, 赵宣. 粉煤灰掺量对集料碱硅酸反应的试验研究[J]. 混凝土, 2019(3):74-77.
WANG Wei, LIU Lianxin, ZHAO Xuan. Experimental study on inhibition of fly ash alkali aggregate reaction[J]. Concrete, 2019(3): 74-77.
[20]杨冬鹏. 粉煤灰对微膨胀碱活性骨料混凝土的影响[J]. 金属矿山, 2016(3): 180-184.
YANG Dongpeng. Effects of flyash on micro expansion concrete with alkali active aggregate[J]. Metal Mine, 2016(3): 180-184.
[21]胡明玉, 陈露璐, 郑江, 等. 粉煤灰和抛光渣抑制碱硅酸反应及其机理研究[J]. 建筑材料学报, 2020, 23(4): 739-747.
HU Mingyu, CHEN Lulu, ZHENG Jiang, et al. Mechanism of fly ash and ceramic polishing powder on inhibition alkali silica reaction[J]. Journal of Building Materials, 2020, 23(4): 739-747.
[22]龚晓强, 刘杰胜, 邢珊珊, 等. 稻壳灰水泥砂浆的耐久性研究[J]. 武汉轻工大学学报, 2018, 37(3): 64-69.
GONG Xiaoqiang, LIU Jiesheng, XIN Shanshan, et al. The study of the durability of the rice husk ash cement mortar[J]. Journal of Wuhan Polytechnic University, 2018, 37(3): 64-69.
[23]SINGH B. Rice husk ash[J]. Waste & Supplementary Cementitious Materials in Concrete, 2018: 417-460.
[24]MULTON S, SELLIER A, CYR M. Chemo-mechanical modeling for prediction of alkali silica reaction (ASR) expansion[J]. Cement & Concrete Research, 2009, 39(6): 490-500.
[25]GLASSER F P, MARR J. The alkali binding potential of OPC and blended cements[J]. Cement, 1985, 82:85-94.