[1]谢强,李雨桐,徐先宇,等.滑坡诱发农村山区砖混结构变形及演化规律研究[J].西安建筑科技大学学报(自然科学版),2024,56(02):166-175.[doi:10.15986/j.1006-7930.2024.02.002]
 XIE Qiang,LI Yutong,XU Xianyu,et al.Study on the deformation and evolution law of brick-concrete structures in rural mountainous areas induced by landslides[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(02):166-175.[doi:10.15986/j.1006-7930.2024.02.002]
点击复制

滑坡诱发农村山区砖混结构变形及演化规律研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年02期
页码:
166-175
栏目:
出版日期:
2024-04-28

文章信息/Info

Title:
Study on the deformation and evolution law of brick-concrete structures in rural mountainous areas induced by landslides
文章编号:
1006-7930(2024)02-0166-10
作者:
谢强12李雨桐1徐先宇1孙伟宸1陈昱成1班宇鑫3傅翔4
(1.重庆大学 土木工程学院,重庆 400045; 2.库区环境地质灾害防治国家地方联合工程研究中心(重庆), 重庆 400045; 3.重庆科技大学 建筑工程学院, 重庆 401331; 4.重庆交通大学 河海学院, 重庆 400074)
Author(s):
XIE Qiang12 LI Yutong1 XU Xianyu1 SUN Weichen1 CHEN Yucheng1 BAN Yuxin3 FU Xiang4
(1.School of Civil Engineering, Chongqing University, Chongqing 400045, China;2.National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Aears (Chongqing), Chongqing 400045, China; 3.School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing 401331, China; 4.School of River and Ocean, Chongqing Jiaotong University, Chongqing 400074, China)
关键词:
滑坡砖混结构裂缝开展PFC3DFVM-DEM
Keywords:
landslides brick-concrete structure crack development PFC3D FVM-DEM
分类号:
TU43
DOI:
10.15986/j.1006-7930.2024.02.002
文献标志码:
A
摘要:
作为西南山区最为频发的地质灾害之一,滑坡对山区中大量存在的砖混房屋造成严重影响,尤其农村山区中受灾最为严重,给人民群众生产生活造成巨大安全隐患. 研究滑坡引起的上部砖混结构变形特征,对科学指导房屋设计防护及灾后监测点布置具有重要现实意义. 本文以酉阳高园子滑坡为例,通过现场调查和裂缝参数拟合研究了滑坡区砖混结构变形破坏特征. 同时基于PFC3D,构建了有限体积-离散元(Finite Volume MethodDiscrete Element Method,FVM-DEM)滑坡-房屋单向耦合模型,模拟并分析了在不同工况下滑坡动态发育过程,进一步揭示了房屋裂缝产生及演化过程. 结果表明:相比于普通无柱砖混结构,底框结构抵抗滑坡诱发变形破坏的能力更强,并且处于前后缘段的房屋相对中段房屋更易出现损伤破坏;房屋的长宽比不宜过小,布置房屋长边走向平行斜坡走向有利于减少滑坡对房屋造成的破坏. 本文总结了在滑坡作用下,上部砖混结构的变形特征和裂缝开展规律,可为农村山区砖混结构设计和布置提供参考.
Abstract:
As one of the most frequent geological hazards in the southwestern mountainous areas, landslides have a serious impact on quantities of brick-concrete structures in the mountainous areas, posing huge safety hazards to the production and daily life of the people. Therefore, it is of great practical significance to study the deformation characteristics of the upper brick-concrete structure caused by landslides for scientific guidance of housing design protection and post-disaster monitoring point layout. Taking Gaoyuanzi landslide in Youyang as an example, the deformation and failure characteristics of brickconcrete structures in the landslide area were studied through on-site investigation and crack parameter fitting. At the same time, based on PFC3D, a Finite Volume Method-Discrete Element Method (FVM-DEM) landslide house unidirectional coupling model was constructed to simulate and analyze the dynamic development process of landslides under different working conditions, further revealing the generation and evolution process of house cracks. The results show that compared to ordinary non column brick-concrete structures, the bottom frame structure has a stronger ability to resist deformation and failure caused by landslides, and houses located in the front and rear edge sections are more prone to damage and failure than those in the middle. The length-width ratio of the house should not be too small, and the long side of the house is parallel to the slope to help reduce the damage caused by the landslide to the house. This paper summarizes the deformation characteristics and crack development law of the upper brickconcrete structure under the action of landslide, which can provide reference for the design and arrangement of rural brick-concrete structure.

参考文献/References:

[1]蒲娉璠. 重庆市滑坡灾害时空分布特征与易发性评价研究[D]. 上海: 华东师范大学, 2016.

PAN Pingfan. Analysis of temporal and spatial characteristics of landslide disaster and landslide susceptibility assessment in Chongqing[D]. Shanghai: East China Normal University, 2016.
[2]刘运泽,洪勇,李柏霄. 隧道洞口古滑坡堆积体边坡综合加固治理技术研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(3): 351-358.
LIU Yunze, HONG Yong, LI Boxiao. Study on the comprehensive reinforcement and control technology of the ancient landslide accumulation body slope of tunnel[J]. J. of Xi′an Univ. of Arch.& Tech. (Natural Science Edition), 2020, 52(3): 351-358.
[3]XU D, PENG L, LIU S, et al. Influences of risk perception and sense of place on landslide disaster preparedness in south-western China[J]. International Journal of Disaster Risk Science, 2018, 9(2):167-180.
[4]LI G, LI Y, YAO H, et al. The influence of land urbanization on landslides: An empirical estimation based on Chinese provincial panel data[J]. Science of the Total Environment, 2017, 595:681-690.
[5]FLORKOWSKA L ,BRYT-NITARSKA I , KIEWICZ GAWA R, et al.Monitoring and assessing the dynamics of building deformation changes in landslide areas[J].Buildings,2019,10(1):33.
[6]陈琴.慢速滑坡地表变形影响下砌体结构破坏响应及易损性模型研究[D].武汉:中国地质大学,2022.
CHEN Qin. Study on failure behavior and vulnerability of masonry structure caused by ground cracks on slowmoving landslides[D]. Wuhan: China University of Geosciences,2022.
[7]田得元. 农村建筑区域特点及典型结构地震易损性分析[D]. 哈尔滨: 中国地震局工程力学研究所, 2021.
TIAN Deyuan. Analysis of rural residential regional characteristics and seismic vulnerability of typical structures[D].Harbin: The Institute of Engineering Mechanics China Earthquake Administration, 2021.
[8]覃瀚萱, 桂蕾, 余玉婷, 等. 基于滑坡灾害预警分级的应急处置措施[J].地质科技通报,2021,40(4):187-195.
QIN Hanxuan, GUI Lei, YU Yuting, et al. Emergency disposal measures based on landslide hazard warning classification[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 187-195.
[9]吴越, 向灵均, 吴同情, 等. 基于受灾体空间概率的滑坡灾害财产风险定量评估[J]. 岩石力学与工程报, 2020, 39(增2): 3464-3474.
WU Yue, XIANG Lingjun, Wu Tongqing, et al. Quantitative assessment of landslide property risk based on impact probability of element at risk[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3464-3474.
[10]PEDUTO D, FERLISI S, NICODEMO G, et al. Empirical fragility and vulnerability curves for buildings exposed to slowmoving landslides at medium and large scales[J]. Landslides, 2017, 14(6): 1993-2007.
[11]ADITI S, KANUNGO S. A modified approach for semi-quantitative estimation of physical vulnerability of buildings exposed to different landslide intensity scenarios[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2019, 13(1): 66-81.
[12]PAPATHOMA-KOHLE M, NEUHAUSER B, RATZINGER K, et al. Elements at risk as a framework for assessing the vulnerability of communities to landslides[J]. Natural Hazards & Earth System Science, 2007, 7(6): 765-779
[13]SINGH A, KANUNGO D P, PAL S. Physical vulnerability assessment of buildings exposed to landslides in India[J]. Natural Hazards, 2019, 96(2): 753-790.
[14]曾韬睿, 殷坤龙, 桂蕾, 等. 基于滑坡致灾强度预测的建筑物易损性定量评价[J]. 地球科学,2023, 48(5): 1807-1824.
ZENG Taorui, YIN Kunlong, GUI Lei, et al.Quantitative vulnerability analysis of buildings based on landslide intensity prediction[J]. Earth Science, 2023, 48(5): 1807-1824.
[15]陈大伟, 吴志坚, 梁超, 等. 通渭黄土滑坡变形特征及致灾机理分析[J]. 防灾减灾工程学报, 2022, 42(1): 24-33.
CHEN Dawei, WU Zhijian, LIANG Chao, et al. Deformation characteristics and disaster-causing mechanism analysis of Tongwei loess landslide[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(1): 24-33.
[16]刘卫南, 谢谟文. 基于点云密度特征的滑坡位移监测方法[J]. 岩土力学, 2020, 41(11): 3748-3756.
LIU Weinan, XIE Mowen. Landslide monitoring based on point cloud density characteristics[J]. Rock and Soil Mechanics, 2020, 41(11): 3748-3756.
[17]DELGADO J, GARRIDO J, LENTI L, et al. Uncon-ventional pseudostatic stability analysis of the Diezma landslide (Granada, Spain) based on a highresolution engineeringgeological model[J]. Engineering Geology, 2015, 184: 81-95.
[18]ZHENG H. A threedimensional rigorous method for stability analysis of landslides[J]. Engineering Geology, 2012, 145/146: 30-40.
[19]周洪福, 张卓婷, 韦玉婷. 基于滑体自重效应的滑带土强度参数取值方法[J]. 岩石力学与工程学报, 2022, 41(5): 1045-1053.
ZHOU Hongfu, ZHANG Zhuoting, WEI Yuting. Method for determining shear strength parameters of sliding-zone soils considering weight effect of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 1045-1053.
[20]毛刚, 胡月萍, 陈媛. 地质灾害频发山区聚落安全性探索——以横断山系的集镇和村庄为例[J]. 西安建筑科技大学学报(自然科学版), 2014, 46(1): 101-108.
MAO Gang, HU Yueping, CHEN Yuan. The safety of the settlement in mountain area with frequent geological disastersExamples of villages and towns in the Hengduan Mountains[J]. J. of Xi′an Univ. of Arch.& Tech. (Natural Science Edition), 2014, 46(1): 101-108.
[21]郭果, 陈筠, 叶永青. 贵州威宁房屋裂缝与地质灾害的关系探讨[J].中国地质灾害与防治学报, 2013, 24(1): 79-82.
GUO Guo, CHEN Jun, YE Yongqing. The relation between house crack and geological disaster in Weining, Guizhou[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(1): 79-82.
[22]吴越, 刘东升, 张小飞, 等. 滑坡灾害易损性定量评估模型应用与比较[J]. 地下空间与工程学报, 2012, 8(5): 916-921.
WU Yue, LIU Dongsheng, ZHANG Xiaofei, et al. Application and comparison of quantitative assessment models on landslide vulnerability[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(5): 916-921.
[23]廖孟光. 平原矿区采动影响下村庄房屋损坏特征与评价指标研究[D]. 北京: 中国矿业大学(北京), 2015.
LIAO Mengguang. Research on damage characteristics and evaluation index of building caused by mining in Plain village[D]. Beijing: China University of Mining & Technology,(Beijing),2015.
[24]KUMAR V S, CHANDRASEKARAN S S. Impact analysis of a building collapse caused by a rainfallinduced landslide in Kerala, India[J]. Buildings, 2022, 12(9): 1395.
[25]LIU C, YU Z, ZHAO S. A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation[J]. Landslides, 2021, 18: 2403-2425.
[26]陈兴. 陕南堆积层滑坡运动特征及致灾强度预测研究[D]. 西安: 西安科技大学, 2021.
CHEN Xing. Prediction study of movement characteristics and impact intensity of accumulation landslide of southern Shanxi[D].Xi′an: Xi′an University of Science and Technology, 2021.
[27]余玉婷, 桂蕾, 朱兴华, 等. 滑坡不同作用模式下房屋基础变形特征[J]. 地质科技通报, 2021, 40(6): 236-245.
YU Yuting, GUI Lei, ZHU Xinghua, et al. Deformation characteristics of building foundation under different action mode of landslide[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 236-245.
[28]韩幽铭,桂蕾,朱兴华, 等.滑坡张拉变形区砌体房屋变形破坏特征数值模拟[J].地质科技通报, 2023, 42(3): 55-62.
HAN Youming, GUI Lei, ZHU Xinghua, et al. Numerical simulation of masonry building deformation and failure characteristics in landslide tension areas[J]. Bulletin of Geological Science and Technology. 2023, 42(3): 55-62.
[29]LUO Y H ,SHEN P, ZHANG M L .How does a cluster of buildings affect landslide mobility: a case study of the Shenzhen landslide[J].Journal of the International Consortium on Landslides, 2019, 16(3): 2421-2431.

备注/Memo

备注/Memo:
收稿日期:2022-11-04 修回日期:2024-05-28
基金项目:重庆市规划与自然资源局科技项目(DK2021Z05null01C);重庆市地质灾害防治中心科技项目(KJ2021050)
第一作者:谢强(1975—),男,博士,教授,博士生导师,主要从事地质灾害防治方面的研究工作. E-mail: xieqiang2000@163.com
通信作者:班宇鑫(1989—),女,博士,副教授. 硕士生导师.主要从事地质灾害防治方面的研究. E-mail: banyuxin@163.com
更新日期/Last Update: 2024-06-21