[1]雷嘉翔,李红莲,李成旺,等.基于典型气象年的游泳馆过渡季室外空气含湿量取值方法[J].西安建筑科技大学学报(自然科学版),2024,56(02):276-282.[doi:10.15986/j.1006-7930.2024.02.014]
 LEI Jiaxiang,LI Honglian,LI Chengwang,et al.A method for determining outdoor air humidity ratio in natatorium during transition season based on typical meteorological years[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(02):276-282.[doi:10.15986/j.1006-7930.2024.02.014]
点击复制

基于典型气象年的游泳馆过渡季室外空气含湿量取值方法()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年02期
页码:
276-282
栏目:
出版日期:
2024-04-28

文章信息/Info

Title:
A method for determining outdoor air humidity ratio in natatorium during transition season based on typical meteorological years
文章编号:
1006-7930(2024)02-0276-07
作者:
雷嘉翔1李红莲12李成旺1朱同1程新红3
(1.西安建筑科技大学 信息与控制工程学院,陕西 西安 710055;2.绿色建筑国家重点实验室(XAUAT),陕西 西安 710055;3.深圳华森建筑设计与工程顾问有限公司,广东 深圳 518054)
Author(s):
LEI Jiaxiang1 LI Honglian12 LI Chengwang1 ZHU Tong1 CHENG Xinhong3
(1.School of Information and Control Engineering, Xi′an Univ. of Arch. & Tech., Xi′an 710055, China; 2.State Key Laboratory of Green Building, XAUAT, Xi′an 710055, China; 3.Shenzhen Huasen Architectural Design and Engineering Consultant Co., Ltd., Guangdong Shenzhen 518054, China)
关键词:
最小通风量典型气象年典型过渡季法不保证小时数
Keywords:
minimum ventilation rate typical meteorological year typical transition season method non-guaranteed hour
分类号:
TU 245.3
DOI:
10.15986/j.1006-7930.2024.02.014
文献标志码:
A
摘要:
游泳馆建筑室内湿负荷大,通风问题备受关注.过渡季室外空气含湿量是通风量计算的基本设计参数,含湿量的取值直接影响了建筑设计的合理性.我国目前使用最广泛的确定过渡季室外计算含湿量的方法是通风曲线法(Ventilation-Curve Method, V-C Method).然而,使用该方法确定的过渡季室外空气含湿量值无法反映不保证小时数,其取值合理性难以评估.提出了一个新的游泳馆过渡季室外空气含湿量取值方法,即典型过渡季法(Typical Transition Season Method, TTS Method).TTS法基于典型气象年(Typical Meteorological Year, TMY)数据挑选过渡季,并以多种不保证小时数计算出室外空气含湿量值,可以很好地表征当地常年气候特征,且能够清楚地反映不保证小时数.研究中选取中国6个典型代表城市,通过计算通风量和换气次数对所选含湿量进行了评估,验证了新方法的合理性.结果表明,TTS法得到的含湿量计算出的通风量更符合设计要求.
Abstract:
The natatorium′s ventilation problem receives much concern because of its large wet load. The outdoor humidity ratio in transition season is the basic design parameter of ventilation calculation, directly affecting the rationality of architectural design. At present, VentilationCurve (V-C) method is the most widely used method to determine outdoor humidity ratio in transition season in China. However, due to failure to reflecting hours, the rationality of this value is difficult to assess by employing this approach. This paper presents a new method, Typical Transition Season(TTS) method, for determining outdoor humidity ratio in transition season of natatorium. The TTS method selects the transition season based on the Typical Meteorological Year (TMY) data, and calculates the outdoor humidity ratio with multiple nonguaranteed hours. This can well represent the local perennial climate characteristics and clearly reflect the non-guaranteed hours. In this study, through selecting six typical representative cities in China, the evaluation of the outdoor humidity ratio is achieved through calculating ventilation volume and air changes rate, verifying the rationality of this method. The results show that the ventilation rate, calculated by the humidity ratio obtained from the TTS method, is more suitable for the design requirements.

参考文献/References:

[1]王逸玮,李书宁,李岳岩. 高效绿色的全运会场馆设计研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(4):577-583.

WANG Yiwei, LI Shuning, LI Yueyan. Discussion on related issues in the design of efficient and green National Games stadium[J]. J. of Xi′an Univ. of Arch & Tech. (Natural Science Edition), 2021, 53(4):577-583
[2]钱刚,计康生,谢坚,等. 天长全民健身中心体育场钢结构屋盖施工过程分析[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(4):617-624.
QIAN Gang, JI Kangsheng, XIE Jian, et al. Analysis on construction process of steel structure roof of Tianchang national fitness center stadium[J]. J. of Xi′an Univ. of Arch & Tech.(Natural Science Edition), 2022, 54(4):617-624.
[3]PANDIAN A, RAJAMEHALA M, SINGH M, et al. Potential risks and approaches to reduce the toxicity of disinfection by-product: A review[J]. Science of the Total Environment, 2022:822.
[4]LEBON M, FELLOUAH H, GALANIS N, et al. Numerical analysis and field measurements of the airflow patterns and thermal comfort in an indoor swimming pool: A case study[J]. Energy Efficiency, 2016:1-22.
[5]CIUMAN P, KACZMARCZYK J. Numerical analysis of the energy consumption of ventilation processes in the school swimming pool[J]. Energies, 2021, 14(4):1023.
[6]陆亚俊. 暖通空调[M]. 第3版. 北京:中国建筑工业出版社,2015:23-25.
LU Yajun. HVAC[M]. 3rd ed. Beijing: China Building Industry Press, 2015:23-25.
[7]YUCE B, LI H, REZGUI Y, et al. Utilizing artificial neural network to predict energy consumption and thermal comfort level: An indoor swimming pool case study[J]. Energy & Buildings, 2014, 80:45-56.
[8]BRAUN Joseph M, GENNINGS C, Hauser R, et al.What can epidemiological studies tell us about the impact of chemical mixtures on human health?[J].Environmental health perspectives 2016,124 (1).
[9]CHEN Qun. Ventilation performance prediction for buildings: A method overview and recent applications[J]. Building & Environment, 2009, 44(4):848-858.
[10]PERSILY A K. Field measurement of ventilation rates[J]. Indoor Air, 2015:97111.
[11]YU Yanzhe, WANG Bei, YOU Shijun, et al. The effects of manual airing strategies and architectural factors on the indoor air quality in college classrooms: a case study[J]. Air Quality, Atmosphere & Health, 2022, 15(1):1-13.
[12]RATAJCZAK K, SZCZECHOWIAK E. Energy consumption decreasing strategy for indoor swimming pools:Decentralized ventilation system with a heat pump[J]. Energy and Buildings, 2019, 206:109574.
[13]ASHRAE HandbookFundamentals 2017[S]. Atlanta: American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc.
[14]中国建筑科学研究院. 民用建筑供暖通风与空气调节设计规范:GB 50736—2012[S]. 北京:中国建筑工业出版社,2012.
China Academy of Building Research. Design code for heating ventilation and air conditioning of civil buildings: GB 50736—2012[S]. Beijing: China Building Industry Press, 2012.
[15]刘晓华,江亿,张涛. 温湿度独立控制空调系统[M]. 第2版. 北京:中国建筑工业出版社,2013:273-278.
LIU Xiaohua, JIANG Yi, ZHANG Tao. Temperature and Humidity Independent Control of Airconditioning Systems[M]. 2nd ed. Beijing: China Building Industry Press, 2013:273-278.
[16]湖南省建筑设计院. 游泳馆采暖通风若干问题的探讨测定研究小结[R].长沙:湖南人民出版社,1973.
Hunan Architectural Design Institute. Discussion on heating and ventilation of natatorium-Summary of measurement research[R]. Changsha:Hunan People′s Publishing House, 1973.
[17]张铁辉. 娱乐性游泳馆暖通空调设计探讨[J]. 暖通空调, 2005(10):93-97.
ZHANG Tiehui. Discussion on HVAC design for recreational natatoria[J]. HV&AC, 2005(10):93-97.
[18]贾瑜,蔡潇涵. 海南地区游泳馆空调通风设计[J]. 洁净与空调技术, 2021(2):90-93.
JIA Yu, CAI Xiaohan. Air conditioning and ventilation design of natatorium in Hainan[J]. CC&AC, 2021(2):90-93.
[19]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 民用建筑热工设计规范:GB 50176—2016[S]. 北京:中国建筑工业出版社,2016.
Ministry of Houing and Urban-Rural Development of the People′s Republic of China, Generd Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China.Code for thermal design of civil buildings: GB 50176—2016[S]. Beijing: China Building Industry Press, 2016.
[20]魏文宇,丁高,张力. 游泳馆空调设计[M]. 北京:机械工业出版社,2004:12-13.
WEI Wenyu, DING Gao, ZHANG Li. Air conditioning design of natatorium[M]. Beijing: Mechanical Industry Press, 2004:12-13.
[21]YU J, KIM S B,BAI J,et al. Comparative study on exponentially weighted moving average approaches for the self-starting forecasting[J]. Applied Sciences-Basel,2020,10(20):7351.
[22]2006. CIBSE GUIDE. In: External design data[S]. UK: CIBSE, 2006.
[23]5.6-2015. ASHRAE Handbook[S]. Atlanta, GA: American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc, 2015.
[24]62.1-2016 ANSI/ASHRAE Standard[S]. Atlanta, GA: American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc, 2016.

相似文献/References:

[1]李红莲,杨 柳,刘大龙,等.建筑能耗模拟用典型气象年产生方法的研究[J].西安建筑科技大学学报(自然科学版),2015,47(02):267.[doi:10.15986/j.1006-7930.2015.02.021]
 LI Honglian,YANG Liu,LIU Dalong,et al.Research on the method of generate TMY for buildingenergy consumption simulation[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(02):267.[doi:10.15986/j.1006-7930.2015.02.021]
[2]付昱曦,李红莲,王赏玉,等.建筑节能分析用典型年数据的获取方法[J].西安建筑科技大学学报(自然科学版),2021,53(01):147.[doi:10.15986/j.1006-7930.2021.01.020]
 FU Yuxi,LI Honglian,WANG Shangyu,et al.Method of obtaining TMY for building energyefficiency analysis[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(02):147.[doi:10.15986/j.1006-7930.2021.01.020]

备注/Memo

备注/Memo:
收稿日期:2022-11-21 修回日期:2024-03-21
基金项目:国家自然科学基金面上项目(52278124)
第一作者:雷嘉翔(1998—),男,硕士生,主要研究方向为建筑节能、建筑室外气象参数. E-mail: 1056654697@qq.com
通信作者:李红莲(1980—),女,博士,教授,主要研究方向为建筑节能、典型气象年. E-mail: lihonglian_lhl@163.com
更新日期/Last Update: 2024-06-24