[1]王 斌,于金山,李 天,等.修复混凝土内部钢筋纵向腐蚀行为研究[J].西安建筑科技大学学报(自然科学版),2023,55(04):520-527.[doi:10.15986/j.1006-7930.2023.04.006 ]
 WANG Bin,YU Jinshan,LI Tian,et al.Study on longitudinal corrosion behavior of internal reinforcement in repaired concrete[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):520-527.[doi:10.15986/j.1006-7930.2023.04.006 ]
点击复制

修复混凝土内部钢筋纵向腐蚀行为研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年04期
页码:
520-527
栏目:
出版日期:
2023-10-26

文章信息/Info

Title:
Study on longitudinal corrosion behavior of internal reinforcement in repaired concrete
文章编号:
1006-7930(2023)04-0520-08
作者:
王 斌1于金山2李 天34陈洁静3郝春艳2金伟良3夏 晋3
(1.国网天津市电力公司,天津 300010; 2.国网天津市电力公司电力科学研究院,天津 300384; 3.浙江大学 建筑工程学院,浙江 杭州 310058; 4.桥梁结构健康与安全国家重点实验室,湖北 武汉 430034)
Author(s):
WANG Bin1YU Jinshan2LI Tian34CHEN Jiejing3HAO Chunyan2JIN Weiliang3XIA Jin3
(1.State Grid Tianjin Electric Power Company, Tianjin 300010,China; 2.State Grid Tianjin Electric Power Research Institute, Tianjin 300384, China; 3.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; 4.State Key Laboratory for Health and Safety of Bridge Structures, Wuhan 430034, China)
关键词:
氯离子 修复混凝土 钢筋腐蚀 微宏电池腐蚀
Keywords:
chloride ion repaired concrete reinforcement corrosion micro-macro cell corrosion
分类号:
TU373
DOI:
10.15986/j.1006-7930.2023.04.006
文献标志码:
A
摘要:
氯离子侵蚀下修复混凝土内部钢筋易再次发生微、宏电池腐蚀.为探究混凝土修复后钢筋纵向腐蚀特征,本文构建了物质传输-腐蚀区域动态界定-钢筋电化学腐蚀多场耦合模型.通过现有文献中的数据证明了基于塔菲尔斜率的腐蚀区域动态界定方法的有效性,利用模型对修复混凝土中沿钢筋纵向微、宏电池的腐蚀机理以及腐蚀的非均匀分布特征进行了研究,同时讨论了不同修复区长度与混凝土初始状态下的修复效果.结果表明,修复混凝土内部钢筋腐蚀出现在靠近修复界面的旧混凝土区中,修复界面存在明显的阳极环效应; 修复前旧混凝土区内的氯离子浓度增加会显著提高腐蚀速率; 随着旧混凝土修复区长度增大,钢筋腐蚀速率加快.
Abstract:
The micro-cell and macro-cell corrosion is prone to re-occurrence on the steel bar in the repaired concrete under the chloride ion erosion. To explore the longitudinal corrosion characteristics of steel bars after concrete repair, a multi field coupling model of material transfer, dynamic definition of corrosion area and electrochemical corrosion was constructed. According to the test data in the existing literature, the feasibility of defining the dynamic corrosion area based on Tafel slope was verified. In addition, the longitudinal micro and macro cell corrosion mechanism and the non-uniform corrosion distribution characteristics of the internal reinforcement in repaired concrete were analyzed through the constructed model. Besides, the repair effects under different length of repair area and initial state of concrete were discussed. The results show that the reinforcement corrosion in the repaired concrete occurs in the old concrete area near the repaired interface, and there is obvious anodic ring effect at the repaired interface. The increase of chloride concentration in the old concrete area before patch repair will significantly increase the corrosion rate. Additionally, the corrosion rate of the reinforcement increases with the increase of length of the old concrete repair area.

参考文献/References:

[1]HOU Baorong, LI Xiaogang, MA Xiumin, et al. The cost of corrosion in China[J]. NPJ Materials Degradation. 2017, 1(1): 4-10.
[2]CAO C, CHEUNG M M S, CHAN B Y B. Modelling of interaction between corrosion-induced concrete cover crack and steel corrosion rate[J]. Corrosion Science. 2013, 69: 97-109.
[3]张菊辉,凌晓政,梁磊,等. 氯盐侵蚀下的钢筋均匀与非均匀锈蚀研究进展[J]. 混凝土. 2016(10): 25-29.
ZHANG Juhui,LING Xiaozheng,LIANG Lei,et al. Research progress on the uniform and non-uniform corrosion of RC structures under chloride environments[J]. Concrete. 2016(10): 25-29.
[4]CUSSON D, QIAN S, HOOGEVEEN T. Field performance of concrete repair systems on highway bridge[J]. ACI Materials Journal. 2006, 5(103): 366-373.
[5]李佳祺,熊建波,范志宏,等. 混凝土中钢筋的宏电池腐蚀研究进展与展望[J]. 硅酸盐学报. 2021, 49(8): 1631-1641.
LI Jiaqi, XIONG Jianbo, FAN Zhihong, et al. Progress and prospects of macrocell corrosion of steel bars in concrete[J]. Journal of the Chinese Ceramic society. 2021, 49(8): 1631-1641
[6]ZHANG Juhui,LING Xiaozheng,LIANG Lei,et al. Research progress on the uniform and non-uniform corrosion of RC structures under chloride environments[J]. Concrete. 2016(10): 25-29.
[7]ALI M S, LEYNE E, SAIFUZZAMAN M, et al. An experimental study of electrochemical incompatibility between repaired patch concrete and existing old concrete[J]. Construction and Building Materials. 2018, 174: 159-172.
[8]ZHANG J, MAILVAGANAM N P. Corrosion of concrete reinforcement and electrochemical factors in concrete patch repair[J]. Canadian Journal of Civil Engineering. 2006, 33(6): 785-793.
[9]SOLEIMANI S, GHODS P, ISGOR O B, et al. Modeling the kinetics of corrosion in concrete patch repairs and identification of governing parameters[J]. Cement and Concrete Composites. 2010, 32(5): 360-368.
[10]CASTRO P, PAZINI E, ANDRADE C, et al. Macrocell activity in slightly chloride-contaminated concrete induced by reinforcement primers[J]. Corrosion. 2003, 59(6): 535-546.
[11]BARKEY D P. Corrosion of steel reinforcement in concrete adjacent to surface repairs[J]. ACI Materials Journal. 2004, 101(4): 266-272.
[12]LOZINGUEZ E, BARTHéLéMY J, BOUTEILLER V, et al. Contribution of Sacrificial Anode in reinforced concrete patch repair: Results of numerical simulations[J]. Construction and Building Materials. 2018, 178: 405-417.
[13]CHEUNG M M S, CAO C. Application of cathodic protection for controlling macrocell corrosion in chloride contaminated RC structures[J]. Construction and Building Materials. 2013, 45: 199-207.
[14]LIU Q, FENG G, XIA J, et al. Ionic transport features in concrete composites containing various shaped aggregates: a numerical study[J]. Composite structures. 2018, 183: 371-380.
[15]MENG Z, LIU Q F, XIA J, et al. Mechanical-transport-chemical modeling of electrochemical repair methods for corrosion‐induced cracking in marine concrete[J]. Computer-aided civil and infrastructure engineering. 2022, 37(14): 1854-1874.
[16]L Qingfeng, S Xiaohan, AAVIJA B, et al. Numerical study of interactive ingress of calcium leaching, chloride transport and multi-ions coupling in concrete[J]. Cement and Concrete Research. 2023, 165: 107072.
[17]L Qingfeng, M Zhaozheng, H Dongshuai, et al. Numerical modelling of electrochemical deposition techniques for healing concrete damaged by alkali silica reaction[J]. Engineering Fracture Mechanics. 2022, 276: 108765.
[18]LIU Q, EASTERBROOK D, YANG J, et al. A three-phase, multi-component ionic transport model for simulation of chloride penetration in concrete[J]. Engineering Structures. 2015, 86: 122-133.
[19]HUSSAIN R R, ISHIDA T. Enhanced electro-chemical corrosion model for reinforced concrete under severe coupled action of chloride and temperature[J]. Construction and Building Materials. 2011, 25(3): 1305-1315.
[20]SONG H, JUNG M, LEE C, et al. Influence of chemistry of chloride ions in cement matrix on corrosion of steel[J]. ACI Materials Journal. 2010, 107(4): 332-339.
[21]ORMELLESE M, BERRA M, BOLZONI F, et al. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures[J]. Cement and Concrete Research. 2006, 36(3): 536-547.
[22]CHALHOUB C, FRANÇOIS R, GARCIA D, et al. Macrocell corrosion of steel in concrete: Characterization of anodic behavior in relation to the chloride content[J]. Materials and Corrosion, 2020, 71(9): 1424-1441
[23]XIA J, LI T, FANG J, et al. Numerical simulation of steel corrosion in chloride contaminated concrete[J]. Construction and Building Materials. 2019, 228: 116745.
[24]GE J, ISGOR O B. Effects of Tafel slope, exchange current density and electrode potential on the corrosion of steel in concrete[J]. Materials and corrosion. 2007, 58(8): 573-582.
[25]LI C, CHEN Q, WANG R, et al. Corrosion assessment of reinforced concrete structures exposed to chloride environments in underground tunnels: Theoretical insights and practical data interpretations[J]. Cement and Concrete Composites. 2020, 112: 103652.
[26]F P, Gjørv O E. Patch repair and macrocell activity in concrete structures[J]. Aci Materials Journal. 2002, 2(99): 143-148.
[27]BARKEY D P. Corrosion of steel reinforcement in concrete adjacent to surface repairs[J]. Aci Materials Journal. 2004, 101(4).

相似文献/References:

[1]元成方,牛荻涛,齐广政.干湿循环机制下碳化混凝土氯离子侵蚀试验研究[J].西安建筑科技大学学报(自然科学版),2012,44(03):339.[doi:10.15986/j.1006-7930.2012.03.006]
 YUAN Cheng-fang,NIU Di-tao,QI Guang-zheng.Experimental study on chloride penetration into concrete after carbonation under wet and dry cycle mechanism[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(04):339.[doi:10.15986/j.1006-7930.2012.03.006]
[2]牛荻涛,陆炫毅,苗元耀,等.盐雾环境下疲劳损伤混凝土氯离子扩散性能[J].西安建筑科技大学学报(自然科学版),2015,47(05):617.[doi:DOI:10.15986/j.1006-7930.2015.05.001]
 NIU Ditao,LU Xuanyi,MIAO Yuanyao,et al.Diffusion of chloride ions into fatigue-damaged concrete in salt spray environment[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(04):617.[doi:DOI:10.15986/j.1006-7930.2015.05.001]
[3]彭跃辉,黄琳雅,陈梦成袁明胜.陶瓷粉再生混凝土氯离子扩散性能研究[J].西安建筑科技大学学报(自然科学版),2019,51(02):177.[doi:10.15986/j.1006-7930.2019.02.004]
 PENG Yuehui,HUANG Linya,Chen Mengcheng,et al.Study on chloride diffusion properties of reclaimed concrete from ceramic powder[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):177.[doi:10.15986/j.1006-7930.2019.02.004]
[4]罗大明 张桂涛.基于贝叶斯理论的氯离子扩散系数计算模型[J].西安建筑科技大学学报(自然科学版),2019,51(05):710.[doi:10.15986/j.1006-7930.2019.010.015]
 LUO Daming,ZHANG Guitao.Calculation model of chloride diffusion coefficient based on Bayesian theory[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):710.[doi:10.15986/j.1006-7930.2019.010.015]

备注/Memo

备注/Memo:
收稿日期:2022-11-11修回日期:2023-07-14
基金项目:国网天津市电力公司科技基金项目(KJ21-1-12)
第一作者:王 斌(1973—),硕士,高级工程师,主要从事电网材料腐蚀与防护研究.E-mail:70811326@qq.com
通信作者:陈洁静(1994—),博士生,主要从事混凝土耐久性研究.E-mail:xiajin@zju.edu.cn; chenjiejing@zju.edu.cn
更新日期/Last Update: 2023-08-28