[1]陆春华,冯晨阳,平 安,等.对基于动弹性模量的海工混凝土抗冻损伤评价[J].西安建筑科技大学学报(自然科学版),2023,55(04):563-570.[doi:10.15986/j.1006-7930.2023.04.011 ]
 LU Chunhua,FENG Chenyang,PING An,et al.Damage evaluation of frost resistance of marine concrete based on dynamic elastic modulus[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):563-570.[doi:10.15986/j.1006-7930.2023.04.011 ]
点击复制

对基于动弹性模量的海工混凝土抗冻损伤评价()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年04期
页码:
563-570
栏目:
出版日期:
2023-10-26

文章信息/Info

Title:
Damage evaluation of frost resistance of marine concrete based on dynamic elastic modulus
文章编号:
1006-7930(2023)04-0563-08
作者:
陆春华冯晨阳平 安杨钰婷
(江苏大学 土木工程与力学学院,江苏 镇江 212013)
Author(s):
LU ChunhuaFENG ChenyangPING AnYANG Yuting
(College of Civil Engineering and Mechanics,Jiangsu University,Jiangsu Zhenjiang 212013,China)
关键词:
冻融循环 海工混凝土 抗压强度 动弹性模量 氯离子迁移系数
Keywords:
freeze-thaw cycle marine concrete compressive strength dynamic elastic modulus chloride migration coefficient
分类号:
TU502+.6
DOI:
10.15986/j.1006-7930.2023.04.011
文献标志码:
A
摘要:
为分析冻融环境下海工混凝土性能的退化规律,对三种配合比的海工混凝土进行了快速冻融试验,并对其物理力学性能及氯离子渗透性能进行分析与评估.试验结果表明:当冻融循环分别超过25次和50次后,海工混凝土的内部损伤和表面损伤先后出现明显的加剧; 总掺量不变但矿粉含量较多时,海工混凝土的抗冻性较优,且掺入适量纳米SiO2能进一步有效提高混凝土的抗冻性; 以动弹性模量损伤度为依据,对冻融循环作用下海工混凝土的抗压强度损失率及氯离子迁移系数增长率进行分析; 并对动弹性模量损伤度与冻融循环次数的直接关系进行了探讨.分析结果表明经历冻融作用的海工混凝土,其动弹性模量损伤度与抗压强度损失率、氯离子迁移系数增长率之间存在较好的线性关系,且幂函数能有效地反映动弹性模量损伤度与冻融循环次数之间的关系.
Abstract:
In order to analyze the degradation law of marine concrete properties under freeze-thaw environment, the rapid freeze-thaw test was carried out on three kinds of marine concrete mixtures, and the physical and mechanical properties and chloride penetration properties were analyzed and evaluated. The results show that when the freeze-thaw cycles exceed 25 times and 50 times, the internal damage and surface damage of marine concrete are significantly aggravated successively. The frost resistance of marine concrete is better when the total dosage is constant but the content of mineral powder is more, and the frost resistance of concrete can be further improved by adding appropriate amount of nano-SiO2. Based on the damage degree of dynamic elastic modulus, the loss rate of compressive strength and the growth rate of chloride migration coefficient of marine concrete under freeze-thaw cycle were analyzed. The direct relationship between the damage degree of dynamic elastic modulus and the number of freeze-thaw cycles was also discussed. The analysis results show that there is a good linear relationship between the damage degree of dynamic elastic modulus and the loss rate of compressive strength and the growth rate of chloride migration coefficient for marine concrete subjected to freeze-thaw, and the power function can effectively reflect the relationship between the damage degree of dynamic elastic modulus and the number of freeze-thaw cycles.

参考文献/References:

[1]武海荣, 金伟良, 延永东, 等. 混凝土冻融环境区划与抗冻性寿命预测[J]. 浙江大学学报(工学版), 2012, 46(4):650-657.
WU Hairong, JIN Weiliang, YAN Yongdong, et al. Freeze-thaw environment regionalization and prediction of freeze-resistance life of concrete[J]. Journal of Zhejiang University(Engineering Science), 2012, 46(4):650-657.
[2]关虓, 牛荻涛, 肖前慧. 考虑残余强度修正的混凝土冻融损伤层及轴心受压模型研究[J]. 铁道学报, 2021, 43(3):175-182.
GUAN Xiao, NIU Ditao, XIAO Qianhui. Study on freeze-thaw damage layer and axial compression model of concrete considering residual strength correction[J]. Journal of Railway Science, 2021, 43(3):175-182.
[3]LI G F, SHEN X D. A study of the durability of aeolian sand powder concrete under the coupling effects of freeze-thaw and dry-wet conditions[J]. JOM, 2019, 71(6):1962-1974.
[4]GE Y, YANG W C, Yuan J, et al. Deterioration of concrete freezing-thawing in different salts solution[J]. Key Engineering Materials, 2009, 802:315-321.
[5]ZHANG X, WANG L, ZHANG J. Mechanical behavior and chloride penetration of high strength concrete under freeze-thaw attack[J]. Cold Regions Science and Technology, 2017, 142:17-24.
[6]SAKTHIVEL T, GETTU R, PILLAI R G. Compressive strength and elastic modulus of concretes with fly ash and slag[J]. Journal of the Institution of Engineers(India): Series A, 2019, 100:575-584.
[7]FERREIRA M, KUOSA H, LEIVO M, et al. Concrete performance subject to coupled deterioration in cold environments[J]. Nuclear Engineering & Design, 2016, 323: 228-234.
[8]HU Z, HU B, GUO M, et al. Improving recycled aggregate concrete by compression casting and nano-silica[J]. Nanotechnology Reviews, 2022, 11(1):1273-1290.
[9]COLLEPARDI M. Concrete durability in a marine environment[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1175(1):012018.
[10]中华人民共和国住房和城乡建设部.普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082-2009[S]. 北京:中国建筑工业出版社,2019:8-9.
MOHURD. Standard for test methods for long-term performance and durability of ordinary concrete: GB/T 50082-2009[S]. Beijing: China Architecture and Building Press, 2019: 8-9.
[11]WANG Y, LIU Z, FU K, et al. Experimental studies on the chloride ion permeability of concrete considering the effect of freeze-thaw damage[J]. Construction and Building Materials, 2020, 236: 117556.
[12]ALSAIF A, BERNAL S A, GUADAGNINI M, et al. Freeze-thaw resistance of steel fibre reinforced rubberised concrete[J]. Construction and Building Materials, 2018, 195:450-458.
[13]ZAHEDI M, RAMEZANIANPOUR A A, RAMEZANIANPOUR A M. Evaluation of the mechanical properties and durability of cement mortars containing nanosilica and rice husk ash under chloride ion penetration[J]. Construction and Building Materials, 2015, 78:354-361.
[14]HONG X, WANG H, SHI F. Influence of NaCl freeze thaw cycles and cyclic loading on the mechanical performance and permeability of sulphoaluminate cement reactive powder concrete[J]. Coatings, 2020, 10(12): 1227.
[15]SONG W L, Li X F, MA K F. The effect of freeze-thaw cycles on mechanical properties of concrete[J]. Advanced Materials Research, 2011, 163: 3429-3432.
[16]ZHANG S, ZHAO B. Research on the performance of concrete materials under the condition of freeze-thaw cycles[J]. European Journal of Environmental and Civil Engineering, 2013, 17(9): 860-871.
[17]SHANG H S, YI T H, SONG Y P. Behavior of plain concrete of a high water-cement ratio after freeze-thaw cycles[J]. Materials, 2012, 5(9): 1698-170.
[18]中华人民共和国住房和城乡建设部.混凝土物理力学性能试验方法标准:GB/T 50081—2019[S].北京:中国建筑工业出版社,2019:12-16.
MOHURD. Standard for test methods of concrete physical and mechanical properties: GB/T 50081-2019[S]. Beijing: China Architecture and Building Press, 2019: 12-16.
[19]王月, 安明喆, 余自若, 等. 氯盐侵蚀与冻融循环耦合作用下C50高性能混凝土的耐久性研究[J]. 中国铁道科学, 2014, 35(3):41-46.
WANG Yue, AN Mingzhe, YU Ziruo, et al. Study on Durability of C50 High Performance Concrete under the coupling effect of chlorine salt erosion and freeze-thaw cycle[J]. China Railway Science, 2014, 35(3):41-46.
[20]LIU M, WANG Y. Damage constitutive model of fly ash concrete under freeze-thaw cycles[J]. Journal of Materials in Civil Engineering, 2012, 24(9): 1165-1174.
[21]曹大富, 葛文杰, 郭容邑,等. 冻融循环作用后钢筋混凝土梁受弯性能试验研究[J]. 建筑结构学报, 2014, 35(6):137-144.
CAO Dafu, GE Wenjie, GUO Rongyi, et al. Experimental study on flexural behavior of reinforced concrete beams subjected to freeze-thaw cycles[J]. Journal of Building Structures, 2014, 35(6):137-144.
[22]关虓. 冻融环境钢筋混凝土受弯构件的损伤分析与承载力研究[D]. 西安:西安建筑科技大学, 2015.
GUAN Xiao. Damage analysis and bearing capacity research of reinforced concrete flexure member in freeze-thaw environment[D]. Xi'an:Xi'an University of Architecture and Technology, 2015.
[23]王佳雯. 混凝土抗压强度与动弹性模量关系试验研究[D]. 武汉: 湖北工业大学, 2017.
WANG Jiawen. Experimental study on the relationship between compressive strength and dynamic elastic modulus of concrete[D]. Wuhan: Hubei University of Technology, 2017.
[24]ZHANG P, CONG Y, VOGEL M, et al. Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation[J]. Construction & Building Materials, 2017, 148:113-121.
[25]ZHANG P, WITTMANN F H, VOGEL M, et al. Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete[J]. Cement and Concrete Research, 2017, 100:60-67.
[26]LI B, MAO J, NAWA T, et al. Mesoscopic chloride ion diffusion model of marine concrete subjected to freeze-thaw cycles[J]. Construction and Building Materials, 2016, 125:337-351.
[27]MUTTAQIN H, KOUHEI N, YASUHIKO S, et al. Stress-strain behavior in tension and compression of concrete damaged by freezing and thawing cycles[C]//International RILEM Workshop on Frost Resistance of Concrete. Essen, Germany: RILEM Workshop 2002: 335-342.
[28]CHUNG C W, SHON C S, KIM Y S. Chloride ion diffusivity of fly ash and silica fume concretes exposed to freeze-thaw cycles[J]. Construction & Building Materials, 2010, 24(9):1739-1745.
[29]KESSLER S, THIEL C, GROSSE CU, et al. Effect of freeze-thaw damage on chloride ingress into concrete[J]. Materials and structures, 2017, 50(2):121.1-121.13.

相似文献/References:

[1]朱方之1,马志鸣2,蒋连接1,等.持载和冻融循环对钢筋混凝土粘结性能的影响[J].西安建筑科技大学学报(自然科学版),2016,48(05):643.[doi:10.15986/j.1006-7930.2016.05.005]
 ZHU Fangzhi,MA Zhiming,JIANG Lianjie,et al.Study of influence of sustained load and freeze-thaw cycling on the bond behavior of steel reinforced concrete[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(04):643.[doi:10.15986/j.1006-7930.2016.05.005]
[2]任战鹏,牛荻涛,吴敬涛,等.极端温度冻融循环对混凝土耐久性的影响[J].西安建筑科技大学学报(自然科学版),2018,50(02):220.[doi:10.15986/j.1006-7930.2018.02.011]
 REN Zhanpeng,NIU Ditao,WU Jingtao,et al.Effect of freezing-thawing cycle on the durability of concrete under Extreme Environment Conditions[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(04):220.[doi:10.15986/j.1006-7930.2018.02.011]
[3]时伟,张亮,杨忠年,等.冻融循环条件下膨胀土力学特性试验研究[J].西安建筑科技大学学报(自然科学版),2019,51(04):480.[doi:10.15986/j.1006-7930.2019.04.003]
 SHI Wei,ZHANG Liang,YANG Zhongnian,et al.Experimental study on mechanical properties of expansive soilof artificial preparation under freeze-thaw cycle conditions[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):480.[doi:10.15986/j.1006-7930.2019.04.003]
[4]郭书源,赵 敏,武 昕.冻融循环下硅质聚苯板体系保温性能研究[J].西安建筑科技大学学报(自然科学版),2020,52(02):273.[doi:10.15986/j.1006-7930.2020.02.017]
 GUO Shuyuan,ZHAO Min,WU Xin.Study on heat-insulated property of silicon polystyrene board under freeze-thaw cycles[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(04):273.[doi:10.15986/j.1006-7930.2020.02.017]
[5]郭从洁,时 伟,杨忠年,等.冻融作用下初始含水率对膨胀土边坡稳定性的影响研究[J].西安建筑科技大学学报(自然科学版),2021,53(01):69.[doi:10.15986/j.1006-7930.2021.01.010]
 GUO Congjie,SHI Wei,YANG Zhongnian,et al.Research on the influence of initial moisture contents on the stability of the expansive soil slope under freezethaw cycles[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(04):69.[doi:10.15986/j.1006-7930.2021.01.010]
[6]崔郁雪,杨忠年,时 伟,等.冻融循环下非饱和膨胀土一维土柱模型试验研究[J].西安建筑科技大学学报(自然科学版),2021,53(03):393.[doi:10.15986/j.1006-7930.2021.03.011]
 CUI Yuxue,YANG Zhongnian,SHI Wei,et al.Experimental study on one dimensional soil column model of unsaturated expansive soil under freeze-thaw cycles[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(04):393.[doi:10.15986/j.1006-7930.2021.03.011]
[7]郑方,邵生俊,王松鹤,等.冻融循环对黄土剪切屈服与破坏行为的影响[J].西安建筑科技大学学报(自然科学版),2023,55(05):669.[doi:10.15986/j.1006-7930.2023.05.005]
 ZHENG Fang,SHAO Shengjun,WANG Songhe,et al.Effects of freeze-thaw cycles on shear yield and failure behavior of loessU[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):669.[doi:10.15986/j.1006-7930.2023.05.005]
[8]刘海翔,柴明霞,马艳霞,等.冻融循环条件下细粒硫酸盐渍土盐冻胀力学特性试验研究[J].西安建筑科技大学学报(自然科学版),2024,56(01):23.[doi:10.15986/j.1006-7930.2024.01.004]
 LIU Haixiang,CHAI Mingxia,MA Yanxia,et al. Experimental study on salt frost heaving mechanical properties of fine-grained sulfate saline soil under freeze-thaw cycle conditions [J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(04):23.[doi:10.15986/j.1006-7930.2024.01.004]
[9]刘华,张雨轩,王松鹤,等.垃圾渗滤液侵入黄土的冻结温度演变特征试验研究[J].西安建筑科技大学学报(自然科学版),2024,56(02):192.[doi:10.15986/j.1006-7930.2024.02.005]
 LIU Hua,ZHANG Yuxuan,WANG Songhe,et al.Experimental study on freezing temperature evolution characteristics of loess contaminated by landfill leachate[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(04):192.[doi:10.15986/j.1006-7930.2024.02.005]

备注/Memo

备注/Memo:
收稿日期:2022-11-11修回日期:2023-07-16
基金项目:国家自然科学基金资助项目(51878319)
第一作者:陆春华(1979—),男,教授,主要从事混凝土结构耐久性等方面研究.E-mail:lch79@ujs.edu.cn
更新日期/Last Update: 2023-08-28