[1]张斌,李文适,蒙春玲,等.外加劲加强相贯节点极限承载力研究[J].西安建筑科技大学学报(自然科学版),2024,56(06):797-808.[doi:10.15986/j.1006-7930.2024.06.002]
 ZHANG Bin,LI Wenshi,MENG Chunling,et al.Study on ultimate bearing capacity of tubular joints strengthened by external stiffening plates[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(06):797-808.[doi:10.15986/j.1006-7930.2024.06.002]
点击复制

外加劲加强相贯节点极限承载力研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年06期
页码:
797-808
栏目:
出版日期:
2024-12-28

文章信息/Info

Title:
Study on ultimate bearing capacity of tubular joints strengthened by external stiffening plates
文章编号:
1006-7930(2024)06-0797-11
作者:
张斌12李文适1蒙春玲2孙清1
(1.西安交通大学 人居环境与建筑工程学院,陕西 西安 710049;2.中国能源建设集团 山西省电力勘测设计院有限公司,山西 太原 030001)
Author(s):
ZHANG Bin12 LI Wenshi1 MENG Chunling2 SUN Qing1
(1.School of Human Settlements and Civil Engineering, Xi′an Jiaotong University, Xi′an 710049, China; 2.China Energy Engineering Group Shanxi Electric Power Engineering Co., Ltd., Taiyuan 030001, China)
关键词:
相贯节点外加劲板试验研究有限元分析极限承载力
Keywords:
tubular joints external stiffening plates experimental study finite element analysis ultimate bearing capacity
分类号:
TU392.3; TU317.1
DOI:
10.15986/j.1006-7930.2024.06.002
文献标志码:
A
摘要:
针对特高压大跨越输电塔中广泛使用的外加劲板加强相贯节点,尚未有明确的计算方法考虑加劲对节点承载力的影响;为此,通过试验和有限元分析,研究了无加劲和外加劲板加强相贯节点的破坏模式、承载力和应变分布及塑性发展规律等力学特性.试验结果表明,采用外加劲板可以显著提高无加劲节点的承载能力和整体刚度,延缓节点破坏过程.与试验结果相比,有限元分析能较好地模拟该类节点的破坏模式和承载性能.为了评估不同参数下外加劲板对承载力提升值的影响规律,对16个无加劲节点模型和144个加劲节点模型进行了有限元分析,结果表明:外加劲板加强相贯节点承载力可以认为是对应无加劲节点承载力与外加劲板提升值之和;AIJ的建议公式可以较为准确地预测无加劲节点承载力;外加劲板提升值与支主管直径比、外加劲板宽度因子和厚度因子呈正相关,与主管径厚比呈负相关,本文采用改进的“剪切强度法”计算外加劲板提升值,并考虑了主管和支管性能的影响.
Abstract:
There is no clear calculation method to consider the influence of stiffening on the bearing capacity of the tube joints stiffened with the external stiffening plates which are widely used in UHV long-span transmission towers. Therefore, the failure mode, bearing capacity, strain distribution and plasticity development law of tube joints with unstiffened and externally stiffening plates were studied through experiments and finite element analysis in this paper. Test results indicate that the external stiffening plates can significantly improve the bearing capacity and stiffness of the joints and postpone the joints′ failure process. Compared with the tested results, the FEA could better simulate the failure modes and bearing capacity behavior of the joints. To estimate the influence of external stiffened plates on the increase of bearing capacity under different parameters, 16 unstiffened joint models and 144 stiffened joint models were analyzed by finite element method. The results show that the bearing capacity of the joints strengthened by external stiffening plates can be considered as the sum of the bearing capacity of corresponding unstiffened joints and the lifting value of external stiffening plates. AIJ′s suggested formula can accurately predict the bearing capacity of unstiffened joints. The lifting value of external stiffening plates is positively correlated with the diameter ratio of brace to chord, the width factor and the thickness factor of external stiffening plates, and negatively correlated with the radius-thickness ratio of chord. In this paper, the improved “shear strength method” is used to calculate the lift value of the external stiffening plates, and the influence of the performance of the chord and the brace is considered.

参考文献/References:

[1]张丽娟, 李素超, 何西伟, 等. 环形加劲肋对大直径相贯钢管节点承载力与失效模式影响研究[J]. 工业建筑, 2021, 51(3): 104-109.

ZHANG Lijuan, LI Suchao, HE Xiwei, et al. Study on effects of stiffening rings on bearing capacity and failure modes of large-diameter steel tube joints[J]. Industrial Construction, 2021, 51(3): 104-109.
[2]陈勇, 刘青松, 沈国辉, 等. 鞍板和环板加劲K形相贯节点承载力试验研究[J]. 建筑结构学报, 2021, 41(9): 165-177.
CHEN Yong, LIU Qingsong, SHEN Guohui, et al. Experimental study on bearing capacity of tubular K-joints stiffened with saddle plates and ring stiffeners[J]. Journal of Building Structures, 2021, 41(9): 165-177.
[3]王帆, 蓝小艺, 潘晓荣, 等. 内置环肋正交X形节点承载力计算方法[J]. 东南大学学报(英文版), 2016, 32(1): 67-72.
WANG Fan, LAN Xiaoyi, PAN Xiaorong, et al. Strength calculation methodology for internally ringstiffened DT-joints[J]. Journal of Southeast University (English Edition), 2016, 32(1): 67-72.
[4]MASILAMANI R, NALLAYARASU S. Experimental and numerical investigation of ultimate strength of ring-stiffened tubular T-joints under axial compression[J]. Applied Ocean Research, 2021, 109: 102576.
[5]MASILAMANI R, NALLAYARASU S. Simplified methods for the strength of ring-stiffened tubular T/Y-joints[J]. Ships and Offshore Structures, 2022,18(9): 1-13.
[6]高春彦,王佳丽. 钢管混凝土K型相贯节点试验研究与数值模拟[J]. 应用力学学报, 2021, 38(1): 234-240.
GAO Chunyan, WANG Jiali. Experimental study and numerical simulation for the concre-filled steel tubular K-joint[J]. Chinese Journal of Applied Mechanics, 2021, 38(1): 234-240.
[7]陈康明,黄汉辉,吴庆雄,等.钢管混凝土K形节点应力集中系数计算方法[J]. 土木工程学报, 2022, 55(12): 94-104.
CHEN Kangming, HUANG Hanhui, WU Qingxiong, et al. Calculation method of stress concentration factor for CFST K-joint[J]. China Civil Engineering Journal, 2022, 55(12): 94-104.
[8]PAMPLONA G, VELLASCO P, TENCHINI A, et al. Numerical investigation of doubler plate reinforced tubular T-joints under chord compression loads[J]. Ce/papers, 2022, 5(4): 264-270.
[9]ZHU L, SONG Q, BAI Y, et al. Capacity of steel CHS T-Joints strengthened with external stiffeners under axial compression[J]. Thin-Walled Structures, 2017, 113: 39-46.
[10]LI W, ZHANG S, HUO W, et al. Axial compression capacity of steel CHS X-joints strengthened with external stiffeners[J]. Journal of Constructional Steel Research, 2018, 141: 156-166.
[11]GAO C, ZHANG D, CUI M, et al. Bearing capacity test and calculation theory on CHS X-Joints stiffened with joint-plates[J]. KSCE Journal of Civil Engineering, 2022: 1-17.
[12]YANG K, ZHU L, BAI Y, et al. Strength of externalringstiffened tubular Xjoints subjected to brace axial compressive loading[J]. Thin-Walled Structures, 2018, 133: 17-26.
[13]American Petroleum Institute. Recommended practice planning, designing and constructing fixed offshore platforms, working stress design:ZA.WSD—2014[S].Washington:API Publishing Servies,2014.
[14]MASILAMANI R, NALLAYARASU S. Development of parametric equations for ultimate capacity of internally ring-stiffened tubular T/Y-joints under axial and moment load[J]. Ships and Offshore Structures, 2022, 17(4): 905-919.
[15]国家市场监督管理总局,国家标准化管理委员会. 金属材料 拉伸试验 第1部分: GB/T228.1—2021[S].北京:中国标准出版社, 2021.
State Administration for Market Regulation,National Standardization Administration.Metallic materialsTensile testingPart 1: Method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2021.
[16]LU L H, WINKEL De G D, YU Y, et al. Deformation limit for the ultimate strength of hollow section joints[M].London:Taylor & Francis Group2021.
[17]CHOO YS, VEGTE GJVD, ZETTLEMOYER N. et al. Static strength of T-joints reinforced with doubler or collar plates. I: Experimental investigations[J]. Journal of Structural Engineering, 2005, 131(1): 119-128.
[18]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.钢结构设计标准: GB50017—2017[S]. 北京:中国建筑工业出版社, 2017.
Ministry of Housing and UrbanRural Development of the People′s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China. Standard for design of steel structures: GB 50017—2017[S]. Beijing: China Architecture & Building Press, 2017.
[19]American Institution of Steel Construction inc. Specification for structural steel buildings:ANSI/AISC 306-16[S]. Chicago:American Institution of Steel Construction,2021.
[20]Architecture Institute of Japan. Recommendations for the design and fabrication of tubular truss structures in stee:ISBN978-8189-5002-3[S]. Tokyo:Architecture Institute of Japan,2002.
[21]SAWADA Y, IDOGAKI S, SEKITA K. Static and fatigue tests on Tjoints stiffened by an internal ring[C]//Offshore Technology Conference. One Petro, Texas: Houston, 1979.

相似文献/References:

[1]高春彦,杨卫平,李 斌,等.风力发电机塔架K型相贯节点静力性能试验研究[J].西安建筑科技大学学报(自然科学版),2014,46(05):671.[doi:10.15986/j.1006-7930.2004.05.009]
 GAO Chunyan,YANG Weiping,LI Bin,et al.Experiment study on the static behavior of the welded tubularK-joints in wind turbine tower[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(06):671.[doi:10.15986/j.1006-7930.2004.05.009]
[2]马宏伟,徐健聪,吴文斌,等.异形单层网壳结构的整体稳定性研究及关键节点分析[J].西安建筑科技大学学报(自然科学版),2024,56(01):47.[doi:10.15986/j.1006-7930.2024.01.007]
 MA Hongwei,XU Jiancong,WU Wenbin,et al.Study on overall stability of specialshaped single-layer reticulated shell structure and its tubular joint analysis[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(06):47.[doi:10.15986/j.1006-7930.2024.01.007]

备注/Memo

备注/Memo:
收稿日期:2023-07-13修回日期:2024-11-14
基金项目:中国能源建设集团规划设计有限公司科技项目(GSKJ2-T06-2021);国家自然科学基金(51978570)
第一作者:张斌(1985—),男,博士生,高级工程师,主要从事输电线路结构研究.E-mail:b2.zhang@sepec.com.cn
通信作者:孙清(1970—),男,教授,博士生导师,主要从事钢结构、钢混组合结构研究.E-mail:sunq@xjtu.edu.cn
更新日期/Last Update: 2025-02-11