[1]刘 俊,王建强,范 力,等.大跨度吊车梁托柱支承屋盖系统的破坏机理分析[J].西安建筑科技大学学报(自然科学版),2023,55(04):607-615.[doi:10.15986/j.1006-7930.2023.04.017 ]
 LIU Jun,WANG Jianqiang,FAN Li,et al.Failure mechanism analysis of roof system supported by columns on large-span crane girders[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):607-615.[doi:10.15986/j.1006-7930.2023.04.017 ]
点击复制

大跨度吊车梁托柱支承屋盖系统的破坏机理分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年04期
页码:
607-615
栏目:
出版日期:
2023-10-26

文章信息/Info

Title:
Failure mechanism analysis of roof system supported by columns on large-span crane girders
文章编号:
1006-7930(2023)04-0607-09
作者:
刘 俊13王建强2范 力13庄继勇2陈思雨3罗 峥1李 想3
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055; 2.宝武装备智能科技有限公司,上海 201900; 3.西安建筑科大工程技术有限公司,陕西 西安 710055)
Author(s):
LIU Jun13WANG Jianqiang2FAN Li13ZHUANG Jiyong1CHEN Siyu3LUO Zheng1LI Xiang3
(1.College of Civil Engineering Xi'an Univ. of Arch. & Tech. Xi'an 710055, China; 2.Baowu Equipment Intelligent Technology Co., Ltd., Shanghai 201900, China; 3.XAUAT Engineering Technology Co., Ltd., Xi'an 710055, China)
关键词:
钢吊车梁变形 托柱节点 节点破坏 屋面倒塌
Keywords:
steel crane beam deformation column joint joint failure roof collapsing
分类号:
TU391
DOI:
10.15986/j.1006-7930.2023.04.017
文献标志码:
A
摘要:
兼做屋盖系统托柱支承的大跨度吊车梁构件,会因非同步吊车荷载作用导致横梁两端产生较大相对转角及变形差,进而增加梁端节点焊缝疲劳破坏的风险,若托柱支承节点失效,上部屋盖系统会发生连续倒塌. 本文以某设置大跨度吊车梁托柱节点的厂房为例,采用SAP2000建立了厂房整体结构有限元模型,分析了上柱失效后的屋盖系统竖向变形和梁柱内力重分布情况. 根据整体结构有限元模型分析结果,采用ABAQUS进一步建立了吊车梁托柱节点局部精细化模型,分析了梁托柱节点区域应力、焊缝应力及竖向位移结果,进而提出了避免结构倒塌的处理方法. 分析表明:厂房破坏发生在梁托柱节点,节点破坏后,上柱下沉造成周边屋面主梁及相邻列上柱内力重分布,应力超出一般设计保留的富裕度,梁端转角及吊车往复荷载会大幅增加梁托柱节点焊缝应力及疲劳. 该研究结果可为采用类似节点做法的厂房抗连续倒塌设计提供思路,并指出了吊车梁兼具其余功能时变形面临的问题.
Abstract:
The large-span double beam component, which is also used as the supporting column of the roof system, will cause a large relative rotation angle and deformation difference at both ends of the beam due to the asynchronous crane load, thus increasing the risk of fatigue damage of the beam end weld seam. Therefore, if the supporting point of the supporting column fails, the upper roof system will collapse continuously. In this paper, taking a factory building with large-span crane beam joist joints as an example, the finite element model of the overall structure of the factory building is established using SAP2000, and the vertical deformation of the roof system and the redistribution of the internal forces of the beam and column after the failure of the upper column are analyzed. According to the results of the finite element model analysis of the overall structure, the local refined model of the crane beam joist joints is further established by ABAQUS. The stress, weld stress and vertical displacement results of the beam column joint area are analyzed, and the treatment method to avoid the collapse of the structure is put forward. The analysis shows that the failure of the plant occurs at the beam-column joint. After the joint is damaged, the upper column sinks, causing the internal force redistribution of the surrounding roof main beam and the adjacent column, and the stress exceeds the abundance retained by the general design. The beam end corner and the reciprocating load of the crane will significantly increase the weld stress and fatigue of the beam column joint. The research results in this paper can provide ideas for the anti-continuous collapse design of the workshop with similar joint method, and point out the problems faced by the deformation of the crane beam when it has other functions.

参考文献/References:

[1]WU B J, TANG Y M, LI Z X, et al. Fatigue damage accumulation modelling of critical components subjected to moving crane loads in reinforced-concrete industrial buildings[J]. Engineering Failure Analysis, 2021, 119:104951.
[2]谢津成,左小青,张盼盼. 关于钢吊车梁挠度容许值的探讨[J]. 钢结构, 2012, 27(3): 50-53.
XIE J C, ZUO X Q, ZHANG P P. Discussion on steel crane beam allowable deflection value[J]. Steel Construction, 2012, 27(3): 50-53.
[3]中华人民共和国住房和城乡建设部. 钢结构设计标 准:GB 50017—2017[S]. 北京:中国建筑工业出版社, 2018.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of steel structure: GB 50017—2017[S]. Beijing, China Construction Industry Pres, 2018.
[4]LINDNER J, GLITSCH T. Vereinfachter Nachweis für. I-und U-Träger-beansprucht durch doppelte Biegung und Torsion[J]. Stahlbau, 2004, 73(9): 704-715.
[5]AISC. Manual of steel construction. Load and resistance factor design III[S]. Chicago: American Institute of Steel Construction, 2011.
[6]Fatigue design and assessment of steel structures:BS 7608:2014+A1:2015[S]. London:British Standard Institule,2015
[7]清华大学,中国建筑科学研究院.建筑结构抗倒塌设计规范: CECS392: 2014[S]. 北京: 中国计划出版社,2014.
Tsinghua University,China Academy of Building Research.Code for collapse resistant design of building structures:CECS392: 2014[S]. Beijing: China Planning Press, 2014.
[8]MENG B, ZHONG W H, HAO JP, et al. Calculation of the resistance of an unequal span steel substructure against progressive collapse based on the component method[J]. Engineering Structures, 2019, 182: 13-28.
[9]YOUSSEF M A, GHAFFARZADEH H, NEHDI M. Seismic performance of RC frames with concentric internal steel bracing[J]. Engineering structures, 2006, 29(7): 1561-1568.
[10]MEHRZAD T R, ALIREZA E, HADIDI M H, et al. Experimental assessment of retro fitted RC frames with differential steel braces[J]. Structures, 2017, 11: 206-217.
[11]中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009—2012[S]. 北京:中国建筑工业出版社, 2012.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Load code for the design of building strctures:GB 50009—2012[S]. Beijing: China Construction Industry Pres, 2012.
[12]RAHIMI A, MAHERI M R. The effects of steel X-brace retrofitting of RC frames on the seismic performance of frames and their elements[J]. Engineering structures, 2020, 206: 110149.
[13]MIRANDA A C, ANTUNES M A, ALARCÓN M V, et al. Use of the stress gradient factor to estimate fatigue stress concentration factors Kf[J]. Engineering Fracture Mechanics, 2019, 206: 250-266.
[14]LIU J H, HUA F L, LANG S S, et al. Evaluation of fatigue strength on multiaxial notched specimens considering failure probability[J]. International Journal of Fatigue, 2022, 156: 106649
[15]PANG J H, HOH H J, TSANG KS, et al. Fatigue crack propagation analysis for multiple weld toe cracks in cut-out fatigue test specimens from a girth welded pipe[J]. International Journal of Fatigue, 2017, 94: 158-165.
[16]MA K, XIE H M. Mixed-mode fracture investigation of PMMA with initial single/double crack(s)interference using phase-shifted coherent gradient sensing method[J]. Polymer Testing, 2017, 59: 296-307.
[17]ZHAO X Q, JIN N, LIU X G, et al. Fatigue failure analysis of steel crane beams with variable-section supports[J]. Engineering Failure Analysis, 2022, 136: 106217.
[18]YU J, Tan K H. Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages[J]. Engineering Structures, 2013, 55: 90-106.
[19]ZHONG W H, TAN Z, TIAN L M, et al. Collapse resistance of composite beam-column assemblies with unequal spans under an internal column-removal scenario[J]. Engineering Structures, 2020, 206: 110143.

备注/Memo

备注/Memo:
收稿日期:2022-11-11修回日期:2023-07-18
基金项目:国家自然科学基金项目(52178163, 52078413)
第一作者:刘 俊(1979—),男,工学硕士,高级工程师,主要从事工程结构安全诊治、智慧运维研究.E-mail:wolflj@126.com
更新日期/Last Update: 2023-08-28