[1]辛公锋,龙关旭,袁阳光,等.高强钢丝两种镀层耐蚀性及点蚀概率模型[J].西安建筑科技大学学报(自然科学版),2023,55(04):616-623.[doi:10.15986/j.1006-7930.2023.04.018 ]
 XIN Gongfeng,LONG Guanxu,YUAN Yangguang,et al.Corrosion resistance and pitting probability models of two kinds of coatings on high strength steel wires[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):616-623.[doi:10.15986/j.1006-7930.2023.04.018 ]
点击复制

高强钢丝两种镀层耐蚀性及点蚀概率模型()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年04期
页码:
616-623
栏目:
出版日期:
2023-10-26

文章信息/Info

Title:
Corrosion resistance and pitting probability models of two kinds of coatings on high strength steel wires
文章编号:
1006-7930(2023)04-0616-08
作者:
辛公锋12龙关旭12袁阳光3黄平明4张泽军1
(1.山东高速集团有限公司创新研究院,山东 济南 250101; 2.山东省高速公路技术和安全评估重点实验室,山东 济南 250101; 3.西安建筑科技大学 土木工程学院,陕西 西安 710055; 4.长安大学 公路学院,陕西 西安 710064)
Author(s):
XIN Gongfeng12 LONG Guanxu12 YUAN Yangguang3 HUANG Pingming4 ZHANG Zejun1
(1.Shandong Hi-speed Group Co. Ltd., Innovation Research Institute, Jinan 250101, China; 2.Shandong Key Laboratory of Highway Technology and Safety Assessment, Jinan 250101, China; 3.College of Civil Engineering, Xi'an Univ. of Arch. & Tech. Xi'an 710055, China; 4.Chang'an University, Highway College, Xi'an 710064, China)
关键词:
桥梁工程 高强钢丝 镀锌层 Galfan镀层 耐蚀性 点蚀概率模型
Keywords:
bridge engineering high strength steel wire Galvanized coating Galfan coating corrosion resistance pitting corrosion probabilistic model
分类号:
U44
DOI:
10.15986/j.1006-7930.2023.04.018
文献标志码:
A
摘要:
为研究高强钢丝镀锌层及Galfan镀层的耐蚀性,并建立腐蚀全过程点蚀概率模型,开展了中性盐雾加速腐蚀试验.对比分析了两种镀层的均匀腐蚀过程,研究了两种镀层的宏观与微观腐蚀形貌,通过动电位极化曲线测试阐释了两种镀层的耐蚀性,最后,采用三维表面形貌仪扫测腐蚀后镀层表面形貌,建立了腐蚀全过程点蚀概率模型.研究发现:镀锌层与Galfan镀层均匀腐蚀深度随腐蚀时间延长分别呈现线性增长与抛物线增长趋势,镀锌层与Galfan镀层腐蚀全过程宏观腐蚀形貌分别呈现两阶段与三阶段变化特征,黄褐色腐蚀物、红褐色锈斑覆盖钢丝表面约1/3的区域时,可分别判定两种镀层被完全腐蚀; 随着腐蚀时间延长,镀锌层微观腐蚀形貌从初期的致密状态向多空、镂空状演变,Galfan镀层微观腐蚀形貌在前期由致密状态过渡至多空镂空状,进一步演变为层状堆叠状态,Galfan镀层被完全腐蚀时,微观形貌呈松散颗粒状; Galfan镀层的动电位极化曲线存在明显钝化区,且腐蚀时长越短,钝化区越稳定,镀锌层在腐蚀过程中的腐蚀倾向性轻微下降,Galfan镀层的腐蚀倾向性随暴露时间的延长下降较明显; 镀层点蚀概率模型中的区间最大点蚀系数不拒绝Gumbel分布,两种镀层区间最大点蚀系数分布的位置参数及尺度参数均随腐蚀时长的增加呈指数下降趋势.
Abstract:
To investigate the corrosion resistance of Galvanized coating and Galfan coating of high strength steel wires, and establish the pitting corrosion probability model of the whole corrosion process, the accelerated corrosion tests were conducted. The uniform corrosion process of the two coatings was compared, the macroscopic and microscopic corrosion features of the two coatings was studied, and the corrosion resistance of the two coatings was explained by the potentiodynamic polarization curve test. Finally, the surface morphology of the coatings after corrosion was measured by a three-dimensional surface morphometer, and the pitting corrosion probabilistic model of the whole corrosion process was established. It is found that the uniform corrosion depth of Galvanized coating and Galfan coating increases linearly and parabolically with the extension of corrosion time, and the macroscopic corrosion features of Galvanized coating and Galfan coating present two-stage and three-stage variation characteristics, respectively.The Galvanized coating or Galfan coating can be deemed to be corroded entirely when the yellow-brown corrosion substance and red-brown rust spot cover about 1/3 area of the wire surface. With the extension of exposure period, the microscopic corrosion feature of Galvanized coating evolves from the initial dense state to the hollow shape. In the preliminary stage, the microscopic corrosion feature of Galfan coating varies from dense state to hollow shape, and then tends to be stacked. When the Galfan coating is corroded entirely, the microscopic corrosion feature tends to be loss granular. Obvious passivation area can be seen on the potentiodynamic polarization curves of Galfan coating, and the shorter the corrosion time, the more stable the passivation zone. The corrosion tendency of Galvanized coating decreases slightly in the corrosion process, while the corrosion tendency of Galfan coating decreases obviously. According to the developed pitting corrosion probabilistic models, the block maximum pitting factor can be described by Gumbel distribution. For Galvanized coating and Galfan coating, both the location parameter and the scale parameter decrease exponentially with the extension of exposure period.

参考文献/References:

[1]XUE S, SHEN R, CHEN W, et al. Corrosion fatigue failure analysis and service life prediction of high strength steel wire[J]. Engineering Failure Analysis, 2020, 110:104440.
[2]KMET S, TOMKO M, SOLTYS R, et al. Complex failure analysis of a cable-roofed stadium structure based on diagnostics and tests[J]. Engineering Failure Analysis, 2019, 103:443-461.
[3]龚帆, 齐盛珂, 邹易清,等. 锈蚀高强钢丝力学性能退化的试验研究[J].工程力学, 2020, 37(10): 105-115.
GONG Fan, QI Shengke, ZOU Yiqing, et al. Experimental study on degradation of mechanical properties of corroded high strength steel wire[J]. Engineering Mechanics, 2020, 37(10): 105-115.
[4]孟二从, 姚国文, 余亚琳, 等.服役环境下镀锌钢丝力学性能影响因素分析[J].建筑材料学报, 2020, 23(4): 934-940.
MENG Ercong, YAO Guowen, YU Yalin, et al. Influence factor analysis on the mechanical behavior of Galvanized steel wire under service environment[J]. Journal of Building Materials, 2020, 23(4): 934-940.
[5]兰成明, 李惠, 鞠杨. 平行钢丝拉索承载力评定[J]. 土木工程学报, 2013, 46(5): 31-38.
LAN Chengming, LI Hui, JU Yang. Bearing capacity assessment for parallel wire cables[J]. China Civil Engineering Journal, 2013, 46(5): 31-38.
[6]魏大圣, 叶觉明, 罗国强, 等.大跨度桥梁缆索用钢丝热浸镀层研究综述[J].表面技术, 2019, 48(11): 91-105.
WEI Dasheng, YE Jueming, LUO Guoqiang, et al. Research progress of hot-dip coating for bridge cable steel wires[J]. Surface Technology, 2019, 48(11): 91-105.
[7]MERISALU M, AARIK L, KOZLOVA J, et al. Effective corrosion protection of aluminum alloy AA2024-T3 with novel thin nanostructured oxide coating[J]. Surface and Coatings Technology, 2021, 411(40):126993.
[8]LI S, XU Y, ZHU S, et al. Probabilistic deterioration model of high-strength steel wires and its application to bridge cables[J]. Structure and Infrastructure Engineering, 2014, 11(9):1240-1249.
[9]SUN H, XU J, CHEN W, et al. Time-Dependent Effect of Corrosion on the Mechanical Characteristics of Stay Cable[J]. Journal of Bridge Engineering, 2018, 23(5): 04018019.
[10]蒋超, 吴冲, 姜旭. 桥梁缆索高强钢丝均匀腐蚀及点蚀的规律[J]. 同济大学学报(自然科学版), 2018, 46(12): 1615-1621.
JIANG Chao, WU Chong, JIANG Xu. Experiment research on uniform corrosion and pitting corrosion of high-strength bridge wires[J]. Journal of Tongji University(Natural Science), 2018, 46(12): 1615-1621.
[11]喻宣瑞, 姚国文, 钟浩, 等.交变荷载和氯盐环境耦合作用下钢绞线的腐蚀特征及力学性能[J].建筑材料学报,2021,24(6):1315-1321.
YU Xuanrui, YAO Guowen, ZHONG Hao, et al. Study on corrosion characteristics and mechanical properties of steel strands under the coupling effect of alternating loading and chloride environment[J]. Journal of Building Materials, 2021,24(6):1315-1321.
[12]MANNA M. Effect of fluxing chemical: An option for Zn-5wt.%Al alloy coating on wire surface by single hot dip process[J]. Surface and Coatings Technology. 2011, 205:3716-3721.
[13]QU D D, GEAR M, SETARGEW N, et al. On the distribution of the trace elements V and Cr in an Al-Zn-Si alloy coating on a steel substrate[J]. Materialia, 2020, 11: 100669.
[14]XUE S, SHEN R, CHEN W, et al. The corrosion-fatigue measurement test of the Zn-Al alloy coated steel wire[J]. Structures, 2020, 27:1195-1201.
[15]CAO Z, KONG G, CHE C, et al. Influence of Nd addition on the corrosion behavior of Zn-5%Al alloy in 3.5wt.% NaCl solution[J]. Applied Surface Science. 2017, 426: 67-76.
[16]MARDER A R. The metallurgy of zinc-coated steel[J]. Progress in Materials Science, 2000, 45(3): 191-271.
[17]AOKI T M Y, KITTAKA T. Results of 10-year atmospheric corrosion testing of hot dip Zn-5mass% Al alloy coated sheet steel[C]. Chicago,USA: Society IaS, 1995.
[18]乔宏霞, 温少勇, 王鹏辉, 等.氯氧镁钢筋混凝土中涂层钢筋腐蚀的电化学特性[J]. 建筑材料学报, 2019, 22(6): 999-1006.
QIAO Hongxia, WEN Shaoyong, WANG Penghui, et al. Electrochemical characteristics of coated steel bars corrosion of magnesium oxychloride reinforced concrete[J]. Journal of Building Materials, 2019, 22(6): 999-1006
[19]SCHULZE H G, FOIST R B, OKUDA K, et al. A small-window moving average-based fully automated baseline estimation method for raman Spectra[J]. Applied Spectroscopy, 2012, 66: 757-764.
[20]MELO C, DANN M R, HUGO R, et al. Extreme value modeling of localized internal corrosion in unpiggable pipelines[J]. International Journal of Pressure Vessels and Piping, 2020, 182:104055.
[21]YUAN Y, HAN W, LI G, et al. Time-dependent reliability assessment of existing concrete bridges including non-stationary vehicle load and resistance processes[J]. Engineering Structures, 2019, 197: 109426.

相似文献/References:

[1]党 栋,贺拴海,高小妮.基于不同结构形式的钢箱梁锚固区力学行为研究[J].西安建筑科技大学学报(自然科学版),2012,44(06):818.[doi:10.15986/j.1006-7930.2012.06.010]
 DANG Dong,HE Shuan-hai,GAO Xiao-ni.Mechanical behavior analysis on different structural forms of steel box girder anchorage zone[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(04):818.[doi:10.15986/j.1006-7930.2012.06.010]
[2]郭 琦,叶全斌,尹海军,等.预应力钢绞线网加固混凝土桥梁的索力分布试验研究[J].西安建筑科技大学学报(自然科学版),2014,46(01):44.[doi:10.15986/j.1006-7930.2014.01.009]
 GUO QiYE QuanbinYIN HaijunYAN Wen.Experimental study of distribution on prestressed strand mesh in strengthening concrete bridges[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(04):44.[doi:10.15986/j.1006-7930.2014.01.009]
[3]任 伟,盖轶婷,黄亚男.软场地土拓宽桥梁地震响应分析[J].西安建筑科技大学学报(自然科学版),2014,46(04):502.[doi:10.15986/j.1006-7930.2014.04.008]
 REN Wei,GAI YiTing,HUANG Yanan.Seismic response analysis of widening bridges in soft site[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(04):502.[doi:10.15986/j.1006-7930.2014.04.008]
[4]郭 琦,尹海军,贺拴海.混凝土梁桥钢筋工作应力释放法试验研究[J].西安建筑科技大学学报(自然科学版),2015,47(04):517.[doi:10.15986/j.1006-7930.2015.04.010]
 GUO Qi,YIN Haijun,HE Shuanhai.Study on stress release method of reinforced for concrete girder bridge[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(04):517.[doi:10.15986/j.1006-7930.2015.04.010]
[5]景天虎1,2,李 桅1,等.悬索桥主缆线形确定的常用精确解析算法比较及电算高效实现方法研究[J].西安建筑科技大学学报(自然科学版),2011,43(06):821.[doi:DOI:10.15986/j.1006-7930.2011.06.010]
 ,,et al.Comparison on common precise numerical analytical algorithmsto determine main cables’curve shape in suspension bridges andstudy on highly effective methods of computati[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(04):821.[doi:DOI:10.15986/j.1006-7930.2011.06.010]
[6]周勇军,韩智强,赵 煜,等.高墩大跨弯连续刚构桥冲击系数计算公式[J].西安建筑科技大学学报(自然科学版),2016,48(02):207.[doi:10.15986/j.1006-7930.2016.02.010]
 ZHOU Yongjun,HAN Zhiqiang,ZHAO Yu,et al.Dynamic load allowance formula of long-span continuous curved rigid frame bridge with high piers[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(04):207.[doi:10.15986/j.1006-7930.2016.02.010]
[7]邵旭东,邱明红,晏班夫,等.基于UHPC材料的高性能装配式桥梁结构研发[J].西安建筑科技大学学报(自然科学版),2019,51(02):160.[doi:10.15986/j.1006-7930.2019.02.002]
 SHAO Xudong,QIU Minghong,YAN Banfu,et al.Research of high performance fabricated bridge structures based on UHPC[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):160.[doi:10.15986/j.1006-7930.2019.02.002]
[8]冯峥,李传习,邓帅,等.钢UHPC组合梁桥面板静承载能力比较分析[J].西安建筑科技大学学报(自然科学版),2019,51(04):551.[doi:10.15986/j.1006-7930.2019.04.013]
 FENG Zheng,LI Chuanxi,DENG Shuai,et al.Comparative analysis of static bearing capacity on bridge deck in Steel-UHPC composite beams[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):551.[doi:10.15986/j.1006-7930.2019.04.013]
[9]郭风俊.基于ANSYS的不平衡日照混凝土箱梁温度场分布研究[J].西安建筑科技大学学报(自然科学版),2020,52(02):207.[doi:10.15986/j.1006-7930.2020.02.008]
 GUO Fengjun.Research on temperature field distribution of unbalanced sunshine concrete box girder based on ANSYS[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(04):207.[doi:10.15986/j.1006-7930.2020.02.008]
[10]刘继,李珍,药天运.熔丝制造3D打印CFRP层内损伤破坏机理与模型研究[J].西安建筑科技大学学报(自然科学版),2024,56(01):74.[doi:10.15986/j.1006-7930.2024.01.010]
 LIU Ji,LI Zhen,YAO Tianyun.Research on damage and failure mechanism and model of 3D printed cfrp layer by fused filament fabrication[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(04):74.[doi:10.15986/j.1006-7930.2024.01.010]

备注/Memo

备注/Memo:
收稿日期:2022-11-11修回日期:2023-07-15
基金项目:国家自然科学基金青年科学基金项目(52308200); 陕西省自然科学基础研究计划一般项目-面上基金项目(2023-JC-YB-321); 山东高速集团有限公司科技创新基金项目(严酷环境混凝土梁性能衰减机理与评估方法)
第一作者:辛公锋(1979—),男,博士,研究员,主要从事基础设施服役性能评估研究.E-mail:gfxin@163.com
通信作者:袁阳光(1991—),男,博士,讲师,主要从事桥梁结构可靠性评估研究.E-mail:yuanyg31@163.com
更新日期/Last Update: 2023-08-28