[1]邵旭东,邱明红,晏班夫,等.基于UHPC材料的高性能装配式桥梁结构研发[J].西安建筑科技大学学报(自然科学版),2019,51(02):160-0167.[doi:10.15986/j.1006-7930.2019.02.002]
 SHAO Xudong,QIU Minghong,YAN Banfu,et al.Research of high performance fabricated bridge structures based on UHPC[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(02):160-0167.[doi:10.15986/j.1006-7930.2019.02.002]
点击复制

基于UHPC材料的高性能装配式桥梁结构研发()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年02期
页码:
160-0167
栏目:
出版日期:
2019-04-28

文章信息/Info

Title:
Research of high performance fabricated bridge structures based on UHPC
文章编号:
1006-7930(2019)02-0160-08
作者:
邵旭东12邱明红12晏班夫12胡伟业12赵旭东12
(1.湖南大学风工程与桥梁工程湖南省重点实验,湖南 长沙 410082;2.湖南大学 土木工程学院,湖南 长沙 410082)
Author(s):
SHAO Xudong 12 QIU Minghong 12 YAN Banfu 12 HU Weiye 12 ZHAO Xudong 12
(1. Key Laboratory for Wind and Bridge Engineering of Hunan Province, Hunan University, Changsha 410082, China; 2. College of Civil Engineering, , Hunan University, Changsha 410082, China)
关键词:
桥梁工程装配式结构超高性能混凝土高性能桥梁结构体系
Keywords:
bridge engineering fabricated structure ultra high performance concrete high performance bridge structure
分类号:
U 442.5
DOI:
10.15986/j.1006-7930.2019.02.002
文献标志码:
A
摘要:
针对现有装配式桥梁结构中共性的技术难题,提升装配式桥梁结构的性能与品质,笔者团队以超高性能混凝土(UHPC)为基础,研发了具有高施工性能、高使用性能和高耐久性能的高性能装配式桥梁结构体系。本文介绍了笔者团队研发的3类高性能装配式桥梁结构:(1)装配式 UHPC 箱梁结构;(2)全预制UHPC “π” 形梁;(3)全预制钢-UHPC 轻型组合 “π” 形梁。通过大量的试验研究和理论分析,掌握了各类装配式UHPC 桥梁结构的基本受力性能,并初步建立了计算理论和设计方法。研究结果表明:(1)等强度承载条件下,装配式UHPC 桥梁结构自重可降为传统结构的40 ~ 60%,方便运输,可实现大构件快速化架设;(2)因 UHPC 中钢筋锚固长度仅需10 倍钢筋直径,现场各梁间结合部可大幅度缩小,可实现现场零焊接,减少现场作业量,并完全规避节点开裂、渗漏的风险;(3)结构抗腐蚀、抗冻、防渗漏性能优良,基本实现结构设计寿命周期内免维护。综合而言,基于UHPC 材料的高性能装配式桥梁结构有望突破现有装配式桥梁中的技术瓶颈,具有广阔的应用前景。
Abstract:
Aiming at the common technical problems of existing fabricated bridges, and to improve the performance and quality of bridge, based on ultra high performance concrete (UHPC) technology, the research group at Hunan University developed the high performance fabricated bridge structure system with the excellent performance in workability, serviceability and durability. In this paper, three types of high performance bridge structures were introduced: (1) fabricated UHPC box girder; (2) fully fabricated UHPC π-shaped girder; (3) fully fabricated steel-UHPC π-shaped composite girder. Based on a great number of experimental study and theoretical analysis, the research group revealed the basic mechanical performance of the fabricated UHPC bridge structure, and preliminarily developed the calculation theory and design method for them. The research results show that: (1) With the same load-bearing capacity, the self-weight of UHPC fabricated bridge structure can be reduced to 40%~50% compared with conventional fabricated bridge structures, and it’s convenient for large bridge component to be transported and hoisted; (2) Since the anchorage length of rebars can be dropped to 10d in UHPC, the field-cast joint between various girder can be obviously reduced . As a result, the welding of rebars and the amount of work in the construction site can be canceled and decreased, respectively, while the risk of cracking and leakage in joint could be completely avoided; (3) The UHPC fabricated bridge structures could be maintenance-free in the service life owing to its excellent corrosion, freeze-thaw cycles and leakage resistance. To sum up, since the high performance fabricated UHPC bridge structures have the potential of overcoming technical bottlenecks in conventional fabricated bridges, they should have a promising future.

参考文献/References:

[1] 黄政字, 沈蒲生, 蔡松柏. 200MPa超高强钢纤维混凝土试验研究[J]. 混凝土, 1993, (3): 3-7.

HUANG Zhengyu, SHEN Pushen, CAI Songbo. Experimental research on 200 MPa super high strength steel fiber reinforced concrete [J]. Concrete, 1993, (3): 3-7.

[2] 王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用 [J]. 硅酸盐通报, 2016, 35(1): 141-149.

WANG Dehui, SHI Caijun, WU Linmei. Research and application of ultra-high performance concrete (UHPC) in China [J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 141-149

[3] 方志, 杨剑. FRP RPC 在土木工程中的研究与应用[J]. 铁道科学与工程学报, 2005, 2(4): 54-61.

FANG Zhi, YANG Jian. Study and application of FRP and RPC in civil engineering[J]. Journal of Railway Science and Engineering, 2005, 2(4): 54-61.

[4] 邵旭东, 曹君辉. 面向未来的高性能桥梁结构研发与应用[J]. 建筑科学与工程学报, 2017, 34(5):41-57.

SHAO Xudong, CAO Junhui. Research and application of high performance bridge structures toward future [J]. Journal of Architecture and Civil Engineering, 2017, 34(5):41-57.

[5] LARRARD F. De, SEDRAN T. Optimization of ultra-high-performance concrete by using a packing model [J]. Cement and Concrete Research, 1994, 24(6): 997-1009.

[6] RICHARD Pierre, CHEYREZY Marcel. Composition of reactive powder concretes [J]. Cement and Concrete Composites, 1995, 25(7): 1501-1511.

[7] WANG Deihui, SHI Caijun, WU Zemei, et al. A review on ultra high performance concrete: Part II. Hydration microstructure and properties [J]. Construction and Building Materials, 2015, 96: 368–377.

[8] KIM Byun-Suk, KOH Gyungtaek, CHO Jeongrae, et al. Toward the next generation of concrete structures: recent advances in UHPC technology [C]. In: Proc. of IABSE Conference. Guangzhou, 2016, 46-59.

[9] 邵旭东, 邱明红, 晏班夫, . 超高性能混凝土在国内外桥梁工程中的研究与应用进展[J]. 材料导报, 2017, 31(12):33-43.

SHAO Xudong, QIU Minghong, YAN Banfu, et al. A review on the research and application of ultra-high performance concrete in bridge engineering around the world[J]. Materials Review, 2017, 31(12):33-43.

[10] 楼庄鸿. 大跨径梁式桥的主要病害[J]. 公路交通科技, 2006,23(4):84-87.

LOU Zhuanghong. Main faults in large span beam bridges [J]. Journal of Highway and Transportation Research and Development, 2006, 23 (4):84-87.

[11] 王国亮,谢峻,傅宇芳. 在用大跨度预应力混凝土箱梁桥裂缝调查研究[J]. 公路交通科技,2008,25(8):52-56.

WANG GuoliangXIE JunFU Yufang. Investigation research on crack of long-span prestressed concrete box girder bridges in service[J]. Journal of Highway and Transportation Research and Development, 2008, 25(8):52-56.

[12] 谢峻,王国亮,郑晓华. 大跨径预应力混凝土箱梁桥长期下挠问题的研究现状[J]. 公路交通科技,2007, 24(1),47-50

XIE Jun, WANG Guoliang, ZHENG Xiaohua. State of art of long-term deflection for long span prestressed concrete box-girder bridge[J]. Journal of Highway and Transportation Research and Development, 2007,24(1):47-50

[13] 邵旭东,詹豪,雷薇,. 超大跨径单向预应力UHPC连续箱梁桥概念设计与初步实验[J]. 土木工程学报,2013,46(8):83-89.

SHAO Xudong, ZHAN Hao, LEI Wei, et al. Conceptual design and preliminary experiment of super-long-span continuous box-girder bridge composed of one-way prestressed UHPC [J]. China Civil Engineering Journal, 2013,46(8), 83-89.

[14] 王岗. 混凝土空心板梁桥典型病害机理研究 [D]. 杭州: 浙江大学, 2016: 8-11.

WANG Gang. Mechanism analysis on typical diseases of prestressed concrete hollow-core slab bridge[D]. HangzhouZhejiang University, 2016: 8-11.

[15] 储兵, 杨未蓬. 简支变结构连续T梁病害原因分析及处理措施[J]. 工程建设, 2018,50(3):50-53.

CHU Bing, YANG Weipeng. Analysis of disease causes of simply-supported variable structure continuous T beam and treatment measures [J]. Engineering Construction, 2018, 50(3):50-53.

[16] 邵旭东, 管亚萍, 晏班夫. 预制超高性能混凝土π形梁桥的设计与初步试验[J]. 中国公路学报, 2018,31(1):46-56.

SHAO Xudong, GUAN Yaping, YAN Banfu. Design and preliminary experiments of UHPC π-shaped girder bridge [J]. China Journal of Highway and Transport, 2018, 31(1):46-56.

[17] 聂建国. -混凝土组合结构桥梁 [M]. 北京: 人民交通出版社, 2011:134

NIE Jianguo. Steel-concrete composite bridge [M]. Beijing: China Communication Press, 2011: 134.

[18] 邓舒文, 邵旭东, 晏班夫, 管亚萍. 全预制快速架设钢-UHPC轻型组合城市桥梁 [J]. 中国公路学报, 2017,30(3):159-166.

DENG Shuwen, SHAO Xudong, YAN Banfu, GUAN Yaping. Lightweight steel-UHPC composite bridge with overall prefabrication and fast erection in city [J]. China Journal of Highway and Transport, 2017, 33(3):159-166.


相似文献/References:

[1]党 栋,贺拴海,高小妮.基于不同结构形式的钢箱梁锚固区力学行为研究[J].西安建筑科技大学学报(自然科学版),2012,44(06):818.[doi:10.15986/j.1006-7930.2012.06.010]
 DANG Dong,HE Shuan-hai,GAO Xiao-ni.Mechanical behavior analysis on different structural forms of steel box girder anchorage zone[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(02):818.[doi:10.15986/j.1006-7930.2012.06.010]
[2]郭 琦,叶全斌,尹海军,等.预应力钢绞线网加固混凝土桥梁的索力分布试验研究[J].西安建筑科技大学学报(自然科学版),2014,46(01):44.[doi:10.15986/j.1006-7930.2014.01.009]
 GUO QiYE QuanbinYIN HaijunYAN Wen.Experimental study of distribution on prestressed strand mesh in strengthening concrete bridges[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(02):44.[doi:10.15986/j.1006-7930.2014.01.009]
[3]任 伟,盖轶婷,黄亚男.软场地土拓宽桥梁地震响应分析[J].西安建筑科技大学学报(自然科学版),2014,46(04):502.[doi:10.15986/j.1006-7930.2014.04.008]
 REN Wei,GAI YiTing,HUANG Yanan.Seismic response analysis of widening bridges in soft site[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(02):502.[doi:10.15986/j.1006-7930.2014.04.008]
[4]郭 琦,尹海军,贺拴海.混凝土梁桥钢筋工作应力释放法试验研究[J].西安建筑科技大学学报(自然科学版),2015,47(04):517.[doi:10.15986/j.1006-7930.2015.04.010]
 GUO Qi,YIN Haijun,HE Shuanhai.Study on stress release method of reinforced for concrete girder bridge[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(02):517.[doi:10.15986/j.1006-7930.2015.04.010]
[5]景天虎1,2,李 桅1,等.悬索桥主缆线形确定的常用精确解析算法比较及电算高效实现方法研究[J].西安建筑科技大学学报(自然科学版),2011,43(06):821.[doi:DOI:10.15986/j.1006-7930.2011.06.010]
 ,,et al.Comparison on common precise numerical analytical algorithmsto determine main cables’curve shape in suspension bridges andstudy on highly effective methods of computati[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(02):821.[doi:DOI:10.15986/j.1006-7930.2011.06.010]
[6]周勇军,韩智强,赵 煜,等.高墩大跨弯连续刚构桥冲击系数计算公式[J].西安建筑科技大学学报(自然科学版),2016,48(02):207.[doi:10.15986/j.1006-7930.2016.02.010]
 ZHOU Yongjun,HAN Zhiqiang,ZHAO Yu,et al.Dynamic load allowance formula of long-span continuous curved rigid frame bridge with high piers[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(02):207.[doi:10.15986/j.1006-7930.2016.02.010]
[7]冯峥,李传习,邓帅,等.钢UHPC组合梁桥面板静承载能力比较分析[J].西安建筑科技大学学报(自然科学版),2019,51(04):551.[doi:10.15986/j.1006-7930.2019.04.013]
 FENG Zheng,LI Chuanxi,DENG Shuai,et al.Comparative analysis of static bearing capacity on bridge deck in Steel-UHPC composite beams[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(02):551.[doi:10.15986/j.1006-7930.2019.04.013]
[8]郭风俊.基于ANSYS的不平衡日照混凝土箱梁温度场分布研究[J].西安建筑科技大学学报(自然科学版),2020,52(02):207.[doi:10.15986/j.1006-7930.2020.02.008]
 GUO Fengjun.Research on temperature field distribution of unbalanced sunshine concrete box girder based on ANSYS[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(02):207.[doi:10.15986/j.1006-7930.2020.02.008]
[9]辛公锋,龙关旭,袁阳光,等.高强钢丝两种镀层耐蚀性及点蚀概率模型[J].西安建筑科技大学学报(自然科学版),2023,55(04):616.[doi:10.15986/j.1006-7930.2023.04.018 ]
 XIN Gongfeng,LONG Guanxu,YUAN Yangguang,et al.Corrosion resistance and pitting probability models of two kinds of coatings on high strength steel wires[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(02):616.[doi:10.15986/j.1006-7930.2023.04.018 ]
[10]刘继,李珍,药天运.熔丝制造3D打印CFRP层内损伤破坏机理与模型研究[J].西安建筑科技大学学报(自然科学版),2024,56(01):74.[doi:10.15986/j.1006-7930.2024.01.010]
 LIU Ji,LI Zhen,YAO Tianyun.Research on damage and failure mechanism and model of 3D printed cfrp layer by fused filament fabrication[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(02):74.[doi:10.15986/j.1006-7930.2024.01.010]

备注/Memo

备注/Memo:

收稿日期:2018-10-01 修改稿日期:2018-03-22

基金项目:基金项目:国家重点研发计划(2018YFC0705400);湖南省科技重大专项(2017SK1010);广东省交通运输厅科技项目(2013-02-036)、湖南省研究生科研创新项目(CX2017B119

第一作者:第一作者:邵旭东(1961–),男,博士,教授,博士生导师,主要从事大跨与新型桥梁结构、基于UHPC的高性能桥梁新结构及旧桥加固技术研发等方向的研究。E-mail: shaoxd@hnu.edu.cn


更新日期/Last Update: 2019-05-23