[1]刘继,李珍,药天运.熔丝制造3D打印CFRP层内损伤破坏机理与模型研究[J].西安建筑科技大学学报(自然科学版),2024,56(01):74-81.[doi:10.15986/j.1006-7930.2024.01.010]
 LIU Ji,LI Zhen,YAO Tianyun.Research on damage and failure mechanism and model of 3D printed cfrp layer by fused filament fabrication[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(01):74-81.[doi:10.15986/j.1006-7930.2024.01.010]
点击复制

熔丝制造3D打印CFRP层内损伤破坏机理与模型研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年01期
页码:
74-81
栏目:
出版日期:
2024-02-28

文章信息/Info

Title:
Research on damage and failure mechanism and model of 3D printed cfrp layer by fused filament fabrication
文章编号:
1006-7930(2024)01-0074-08
作者:
刘继1李珍2药天运3
(1.陕西铁路工程职业技术学院 道桥与建筑学院,陕西 渭南 714099;2.长安大学 公路学院,陕西 西安 710061;3.长安大学 建筑工程学院,陕西 西安 710061)
Author(s):
LIU Ji1 LI Zhen2 YAO Tianyun3
(1.School of Bridge and Building, Shaanxi Railway Institute, Shaanxi Weinan 714099, China;2.School of Highway, Chang′an University, Xi′an 710061, China;3.College of Civil Engineering and Architecture, Chang′an University, Xi′an 710061, China)
关键词:
桥梁工程熔丝制造技术碳纤维复合材料损伤失效机理夹片式锚具
Keywords:
bridge engineering fused filament fabrication carbon fiber reinforced plastics damage failure mechanism clip anchor
分类号:
TU599;U444
DOI:
10.15986/j.1006-7930.2024.01.010
文献标志码:
A
摘要:
为将3D打印技术应用到桥梁工程中,以熔丝制造3D打印碳纤维复合材料锚环为研究对象,开展了材料层内损伤失效机理的基础性研究工作.首先,对锚环进行了张拉锚固破坏试验,明晰材料的损伤失效模式.其次,测试分析了材料的弹性参数及强度参数值,供后续仿真分析使用.最后,通过VUMAT子程序构建了材料的损伤失效本构关系,利用ABAQUS仿真分析软件模拟熔丝制造3D打印碳纤维复合材料锚环的渐进损伤失效全过程,分析其层内损伤失效机理.结果表明:熔丝制造3D打印碳纤维复合材料具有显著的层内损伤现象;选用Hashin损伤起始判据与刚度瞬间退化模型作为熔丝制造3D打印碳纤维复合材料损伤力学模型偏于安全,具有一定的可行性;锚环在高度方向产生纵向裂纹是由纤维拉伸失效导致的.
Abstract:
In order to apply 3D printing technology to bridge engineering, the basic research work on the mechanism of damage and failure within the material layer was carried out, with the manufacturing of 3D printed carbon fiber composite anchor rings using fuse as the research object. Firstly, tensile anchorage failure test was carried out to clarify the damage failure mode of the anchor ring. Secondly, the elastic parameters and strength parameters of the material are tested and used for subsequent simulation analysis. Finally, the damage failure constitutive relationship of the material was constructed by VUMAT subroutine, and the whole process of progressive damage failure of the 3D-printed carbon fiber reinforced plastic anchor ring was simulated by ABAQUS simulation analysis software, and the damage failure mechanism in the layer was analyzed. The results show that the intra damage of 3D printed carbon fiber reinforced plastic manufactured by fuse is significant. The use of Hashin damage initiation criterion and stiffness instantaneous degradation model as the damage mechanical model of 3D printing carbon fiber reinforced plastic is safe and feasible. The longitudinal cracks in the height direction of the anchor ring are caused by fiber tensile failure.

参考文献/References:

[1]郭瑞,李承高,咸贵军,等.碳玻纤维混杂复合材料杆体的力学与耐久性能研究[J].西安建筑科技大学学报(自然科学版),2022,54(2):174-183.
GUO Rui, LI Chenggao, XIAN Guijun, et al. Study on mechanical and durability of carbonglass fiber hybrid composite rod[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2022, 54(2): 174-183.
[2]蒲定,王召,刘晓彬,等.南海环境下乙烯基酯玻璃纤维复合材料拉伸性能[J].西安建筑科技大学学报(自然科学版),2022,54(2):159-163,210.
PU Ding, WANG Zhao, LIU Xiao Bing, et al. Behaviour of glass fiber-reinforced vinyl ester composite in South China Sea environment[J]. J. Xi′an Univ. of Arch. & Tech.(Natural Science Edition), 2022, 54(2): 159-163,210.
[3]唐通鸣, 张政, 邓佳文, 等. 基于FDM的3D打印技术研究现状与发展趋势[J]. 化工新型材料, 2015, 43(6): 228-230,234.
TANG Tongming, ZHANG Zheng, Deng Jiawen, et al. Research status and trend of 3D printing technology based on FDM[J]. New Chemical Materials, 2015, 43(6): 228-230,234.
[4]MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in nozzle impregnation[J]. Scientific Reports, 2016, 6: 23-58.
[5]MELENKA G W, CHEUNG B K O, SCHOFIELD J S, et al. Evaluation and prediction of the tensile properties of continuous fiberreinforced 3D printed structures[J]. Composite Structures, 2016, 153: 866-875.
[6]CHACN J M, CAMINERO M A, NúEZ P J, et al. Additive manufacturing of continuous fiber reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties[J]. Composites Science and Technology, 2019, 181: 107688.
[7]GOH G D, DIKSHIT V. NAGALINGAM A P.et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design, 2018,137: 79-89.
[8]JUSTO J, TáVARA L, GARCíA GUZMáN L, et al. Characterization of 3D printed long fiber reinforced composites[J]. Composite Structures, 2018, 185: 537-548.
[9]DICKSON A N, BARRY J N, MCDONNELL K A, et al. Fabrication of continuous carbon, glass and Kevlar fiber reinforced polymer composites using additive manufacturing [J]. Additive Manufacturing, 2017, 16: 146-152.
[10]BLOK L G, LONGANA M L, YU H, et al. An investigation into 3D printing of fiber reinforced thermoplastic composites[J]. Additive Manufacturing, 2018, 22: 176-186.
[11]NING F, CONG W, QIU J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling[J]. Composites Part BEngineering, 2015, 80: 369-378.
[12]KARSLI N G, AYTAC A. Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites[J]. Composites Part BEngineering, 2013, 51: 270-275.
[13]陈向明, 姚辽军, 果立成,等. 3D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10): 174-198.
CHEN Xiangming, YAO Liaojun, GUO Licheng, et al. 3D printed continuous fiber-reinforced composites: State of the art and perspectives[J]. Acta Aeronautica ET Astronautica Sinica, 2021, 42(10): 174-198.
[14]KABIR S M F. MATHURK, SEYAMA FM. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties[J]. Composite Structures, 2020, 232(1): 111476.
[15]YOUNG D, WETMORE N, CZABAJ M. Interlayer fracture toughness of additively manufactured unreinforced and carbon-fiber-reinforced acrylonitrile butadiene styrene [J]. Additive Manufacturing, 2018. 22: 508-515.
[16]胡艺伟,李亚智,李彪,等. 纤维增强聚合物基复合材料熔融堆积成型技术的研究进展及产品的力学性能[J]. 复合材料学报,2021,38(4):979-996.
HU Yiwei, LI Yazhi, LI Biao, et al. 3D printed fibre-reinforced polymer composites Review of the fused deposition modeling process and mechanical performance of products[J]. Acta Materiae Compositae Sinica, 2021,38(4):979-996.
[17]AL-ABADI H,THAI H-T,PATON-COLE V, et al. Elastic properties of 3D printed fiber-reinforced structures[J]. Composite Structures, 2018, 193:8-18.
[18]SWOLFS Y,PINHO S T. 3D printed continuous fiber-reinforced composites:Bio-inspired microstructures for improving the translaminar fracture toughness[J]. Composites Science and Technology, 2019, 182:107731.
[19]O′CONNOR H J, DOWLING D P.Evaluation of me influence of low-pressure additive manufacturing processing conditions on printed polymer parts[J]. Additive Manufacturing,2018. 21: 404-412.
[20]李鸿宇. 碳纤维网络增强阴离子聚合尼龙6复合材料的制备与性能研究[D]. 湖南:湖南大学,2019.
LI Hongyu, Preparation and performance study of carbon fiber network reinforced anionic polymerized nylon 6 composite materials[D]. Hunan: Hunan University, 2019.
[21]ASTM. Standard test method for tensile properties of polymer matrix composite materials: ASTM D30392008 [S]. PA, USA: ASTM International, 2008.
[22]ASTM. Standard test method for inplane shear response of polymer matrix composite materials by tensile test of a ±45°laminate: ASTM 35181994[S]. PA, USA: ASTM International, 1994.
[23]ASTM. Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear loading: ASTM D34102003[S]. PA, USA: ASTM International, 2003.
[24]HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics. 1980, 47(2): 329-334.
[25]LEE J D. Three-dimensional finite element analysis of damage accumulation in composite laminate[J]. Computers & Structures. 1982, 15(3): 335-350.

相似文献/References:

[1]党 栋,贺拴海,高小妮.基于不同结构形式的钢箱梁锚固区力学行为研究[J].西安建筑科技大学学报(自然科学版),2012,44(06):818.[doi:10.15986/j.1006-7930.2012.06.010]
 DANG Dong,HE Shuan-hai,GAO Xiao-ni.Mechanical behavior analysis on different structural forms of steel box girder anchorage zone[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(01):818.[doi:10.15986/j.1006-7930.2012.06.010]
[2]郭 琦,叶全斌,尹海军,等.预应力钢绞线网加固混凝土桥梁的索力分布试验研究[J].西安建筑科技大学学报(自然科学版),2014,46(01):44.[doi:10.15986/j.1006-7930.2014.01.009]
 GUO QiYE QuanbinYIN HaijunYAN Wen.Experimental study of distribution on prestressed strand mesh in strengthening concrete bridges[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(01):44.[doi:10.15986/j.1006-7930.2014.01.009]
[3]任 伟,盖轶婷,黄亚男.软场地土拓宽桥梁地震响应分析[J].西安建筑科技大学学报(自然科学版),2014,46(04):502.[doi:10.15986/j.1006-7930.2014.04.008]
 REN Wei,GAI YiTing,HUANG Yanan.Seismic response analysis of widening bridges in soft site[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(01):502.[doi:10.15986/j.1006-7930.2014.04.008]
[4]郭 琦,尹海军,贺拴海.混凝土梁桥钢筋工作应力释放法试验研究[J].西安建筑科技大学学报(自然科学版),2015,47(04):517.[doi:10.15986/j.1006-7930.2015.04.010]
 GUO Qi,YIN Haijun,HE Shuanhai.Study on stress release method of reinforced for concrete girder bridge[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(01):517.[doi:10.15986/j.1006-7930.2015.04.010]
[5]景天虎1,2,李 桅1,等.悬索桥主缆线形确定的常用精确解析算法比较及电算高效实现方法研究[J].西安建筑科技大学学报(自然科学版),2011,43(06):821.[doi:DOI:10.15986/j.1006-7930.2011.06.010]
 ,,et al.Comparison on common precise numerical analytical algorithmsto determine main cables’curve shape in suspension bridges andstudy on highly effective methods of computati[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(01):821.[doi:DOI:10.15986/j.1006-7930.2011.06.010]
[6]周勇军,韩智强,赵 煜,等.高墩大跨弯连续刚构桥冲击系数计算公式[J].西安建筑科技大学学报(自然科学版),2016,48(02):207.[doi:10.15986/j.1006-7930.2016.02.010]
 ZHOU Yongjun,HAN Zhiqiang,ZHAO Yu,et al.Dynamic load allowance formula of long-span continuous curved rigid frame bridge with high piers[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(01):207.[doi:10.15986/j.1006-7930.2016.02.010]
[7]邵旭东,邱明红,晏班夫,等.基于UHPC材料的高性能装配式桥梁结构研发[J].西安建筑科技大学学报(自然科学版),2019,51(02):160.[doi:10.15986/j.1006-7930.2019.02.002]
 SHAO Xudong,QIU Minghong,YAN Banfu,et al.Research of high performance fabricated bridge structures based on UHPC[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(01):160.[doi:10.15986/j.1006-7930.2019.02.002]
[8]冯峥,李传习,邓帅,等.钢UHPC组合梁桥面板静承载能力比较分析[J].西安建筑科技大学学报(自然科学版),2019,51(04):551.[doi:10.15986/j.1006-7930.2019.04.013]
 FENG Zheng,LI Chuanxi,DENG Shuai,et al.Comparative analysis of static bearing capacity on bridge deck in Steel-UHPC composite beams[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(01):551.[doi:10.15986/j.1006-7930.2019.04.013]
[9]郭风俊.基于ANSYS的不平衡日照混凝土箱梁温度场分布研究[J].西安建筑科技大学学报(自然科学版),2020,52(02):207.[doi:10.15986/j.1006-7930.2020.02.008]
 GUO Fengjun.Research on temperature field distribution of unbalanced sunshine concrete box girder based on ANSYS[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(01):207.[doi:10.15986/j.1006-7930.2020.02.008]
[10]辛公锋,龙关旭,袁阳光,等.高强钢丝两种镀层耐蚀性及点蚀概率模型[J].西安建筑科技大学学报(自然科学版),2023,55(04):616.[doi:10.15986/j.1006-7930.2023.04.018 ]
 XIN Gongfeng,LONG Guanxu,YUAN Yangguang,et al.Corrosion resistance and pitting probability models of two kinds of coatings on high strength steel wires[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(01):616.[doi:10.15986/j.1006-7930.2023.04.018 ]

备注/Memo

备注/Memo:
收稿日期:2022-09-16修回日期:2023-01-01
基金项目:长安大学中央高校基本科研业务费专项资金(300102282108);陕西铁路工程职业技术学院科研基金项目(KY2019-50)
第一作者:刘继(1989—),男,硕士,讲师,主要从事大跨桥梁施工、桥梁工程智能制造研究.E-mail: lj_hpu@163.com
更新日期/Last Update: 2024-04-08