[1]刘文丰,李碧雄,王熠泽,等.稻壳灰粒径对水泥砂浆的碱硅酸反应风险影响[J].西安建筑科技大学学报(自然科学版),2024,56(01):30-37.[doi:10.15986/j.1006-7930.2024.01.005]
 LIU Wenfeng,LI Bixiong,WANG Yize,et al.Effect of rice husk ash particle size on alkali silica reaction risk of cement mortar[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(01):30-37.[doi:10.15986/j.1006-7930.2024.01.005]
点击复制

稻壳灰粒径对水泥砂浆的碱硅酸反应风险影响()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年01期
页码:
30-37
栏目:
出版日期:
2024-02-28

文章信息/Info

Title:
Effect of rice husk ash particle size on alkali silica reaction risk of cement mortar
文章编号:
1006-7930(2024)01-0030-08
作者:
刘文丰123李碧雄12王熠泽12汪知文12陈权1高攀越1
(1.四川大学 建筑与环境学院,四川 成都 610065; 2.深地科学与工程教育部重点实验室,四川 成都 610065;3.华西绿舍建材有限公司,四川 成都 610000)
Author(s):
LIU Wenfeng123LI Bixiong12WANG Yize12WANG Zhiwen12CHEN Quan1GAO Panyue1
(1.College of Architecture and Environment,Sichuan University,Chengdu 610065,China;2.Key Laboratory of Deep Earth Science and Engineering, Ministry of Education,Chengdu 610065,China;3.Huashi Green Homeland Building Materials Co., Ltd., Chengdu 610000, China)
关键词:
碱硅酸反应稻壳灰粒径粉煤灰微观分析
Keywords:
alkali silica reaction rice husk ash particle size fly ash micro analysis
分类号:
TU528.041
DOI:
10.15986/j.1006-7930.2024.01.005
文献标志码:
A
摘要:
固废资源化是实现可持续发展的重要内容.稻壳灰的火山灰活性高,有望作为辅助性胶凝材料用于水泥砂浆或混凝土,但其中K2O和Na2O含量较大,需探明不同粒径稻壳灰的掺入可能带来的碱硅酸反应风险.现有研究表明,粉煤灰的火山灰活性能抑制碱硅酸反应,已得到广泛应用.对比起见,设置了基准组、掺4种粒径粉煤灰组和稻壳灰组,在分别测试其抗压、抗折强度的基础上,测试膨胀率,通过SEM和EDS测试了掺粒径为5 μm的稻壳灰试件和未掺稻壳灰试件的微观形貌和元素组成.试验结果表明:稻壳灰或粉煤灰的掺入均可以提高砂浆的力学性能,稻壳灰粒径越小提高的程度越大,中值粒径为5 μm的稻壳灰可以使砂浆28 d抗压强度提高50.6%,抗压强度提高647%,效果均好于粉煤灰;稻壳灰的粒径不超15 μm时,对砂浆的膨胀率可起到显著的抑制作用,且抑制效果优于粉煤灰,5 μm的稻壳灰能使14 d膨胀率减小90%,并使骨料表现为无害,而8~20 μm粉煤灰均仅减小60%左右的14 d膨胀率,骨料仍表现为有害;稻壳灰的火山灰活性不仅能生成低Ca/Si比的CSH凝胶,降低碱含量,还能使砂浆致密性提高,抑制碱离子和水的渗透,从而表现为对碱硅酸反应的抑制效果.
Abstract:
Solid waste recycling is an important part of achieving sustainable development. Rice husk ash has high pozzolanic activity and is expected to be used as an auxiliary cementitious material for cement mortar or concrete. However, the content of K2O and Na2O in RHA is high, so it is necessary to find out the risk of alkali silica reaction that may be caused by the mixing of RHA with different particle sizes. The existing research shows that the pozzolanic activity of fly ash inhibits alkali silica reaction and has been widely used. For comparison, a benchmark group, a group with 4 different particle sizes of fly ash, and a group with rice husk ash are set up. On the basis of testing the compressive strength and flexural strength respectively, the expansion rate is tested, and the microstructure and elemental composition of the rice husk ash specimens with a particle size of 5 μm and the specimens without rice husk ash are tested by SEM and EDS. The test results show that the mechanical properties of mortar can be improved by adding rice husk ash or fly ash. The smaller the particle size of rice husk ash, the greater the degree of improvement. The RHA with a median particle size of 5 μm can increase the 28 d compressive strength of mortar by 50.6% and 64.7%, both of which are better than fly ash. When the particle size of RHA is not more than 15 μm, it can significantly inhibit the expansion rate of mortar, and the inhibition effect is better than that of fly ash. 5 μm rice husk ash can reduce the 14 d expansion rate by 90%, and make the aggregate harmless, while 8~20 μm fly ash only reduces the 14 d expansion rate by 60%, and the aggregate is still harmful. The pozzolastic activity of RHA can not only generate C-S-H gel with low Ca/Si ratio and reduce alkali content, but also improve the compactness of mortar and inhibit the penetration of alkali ions and water, thus showing an inhibitory effect on alkali silicate reaction.

参考文献/References:

[1]胡艳香, 任雪琪, 涂佳辉, 等. 锂渣和橡胶粉掺量对水泥砂浆力学性能影响研究[J].混凝土, 2022(6): 117-120,124.
HU Yanxiang, REN Xueqi, TU Jiahui, et al. Effect of lithium slag and rubber powder on mechanical properties of cement mortar[J]. Concrete, 2022(6): 117-120,124.
[2]刘振正, 谢春磊, 王学营, 等. 稻壳灰的制备及其对地聚物力学性能的影响[J]. 硅酸盐通报, 2020, 39(12): 3881-3888.
LIU Zhenzheng, XIE Chunlei, WANG Xueyin, et al. Preparation of rice husk ash and its effect on mechanical properties of geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12):3881-3888.
[3]王维红, 景何仿, 李新睿, 等. 高性能混凝土热工性能及耐高温性能试验研究[J]. 混凝土, 2021(9): 94-97.
WANG Weihong, JING Hefang, LI Xinrui, et al. Experimental study on thermal performance and high temperature resistance performance of high performance concrete[J]. Concrete, 2021(9): 94-97.
[4]汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
WANG Zhiwen, LI Bixiong. Research progress on application of rice husk ash in cement and concrete[J]. Materials Reports, 2020, 34(9): 9003-9011.
[5]何凌侠, 尹健, 田冬梅, 等. 稻壳灰对活性粉末混凝土强度的影响[J]. 湘潭大学自然科学学报, 2016, 38(2): 23-28.
HE Lingxia, YIN Jian, TIAN Dongmei, et al. Effect of rice husk ash on the strength of reactive powder concrete[J]. 2016, 38(2): 23-28.
[6]中华人民共和国国家质量监督检验检疫总局. 通用硅酸盐水泥: GB175—2007[S]. 北京:中国标准出版社, 2007.
General Administration of Quality Supervision,Inspection and Quarantine of the People′s Ropubilic of China. General Portland Cement: GB175—2007[S]. Beijing: Standards Press of China, 2007.
[7]龚青南, 王德辉. 混凝土碱硅酸反应膨胀预测模型的研究进展[J]. 硅酸盐通报, 2021, 40(12): 3891-3902.
GONG Qingnan, WANG Dehui. Review of expansion prediction models for alkali-silica reaction of concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(12): 3891-3902.
[8]王威, 刘连新, 张毅. 青藏地区集料碱硅酸反应的研究分析[J]. 混凝土, 2019(6): 93-95.
WANG Wei, LIU Lianxin, ZHANG Yi. Analysis of the reaction study of aggregate alkali silicic acid in the Qinghai Tibet area[J]. Concrete, 2019(6): 9395.
[9]ABBAS S, KAZMI S, MUNIR M. Potential of rice husk ash for mitigating the alkali-silica reaction in mortar bars incorporating reactive aggregates[J]. Construction and Building Materials, 2017, 132(Feb.1): 61-70.
[10]RAMEZANIANPOUR A A, ZARRABI K, MAHDIKHANI M. Mitigation of alkali aggregate reaction of concretes containing rice husk ash (RHA) [C]//13th International Conference on AlkaliAggregate Reactions in Concrete. Trondheim, Norway: Department Genie Civil, 2008.
[11]Khan Kaffayatullah, Ullah Muhammad Fahad, Shahzada Khan, et al. Effective use of microsilica extracted from rice husk ash for the production of high-performance and sustainable cement mortar[J]. Construction and Building Materials, 2020, 258: 119589.
[12]LE H T,SIEWERT K,LUDWIG H M. Alkali silica reaction in mortar formulated from selfcompacting high performance concrete containing rice husk ash [J]. Construction and Building Materials, 2015, 88: 10-19.
[13]Mohammad Badrul Ahsan, Zahid Hossain. Effect of particle size of rice husk ash (RHA) in mitigating alkali silica reaction (ASR) in concrete pavement[J]. International Journal of Pavement Research and Technology, 2018, 11:861-866.
[14]ZERBINO R,GIACCIO G,BATIC O R, et al. Alkalisilica reaction in mortars and concretes incorporating natural rice husk ash[J]. Construction and Building Materials, 2012, 36: 796-806.
[15]NICOLE P H, PAULO J, CARASEK H. Effect of silica fume and rice husk ash on alkalisilica reaction[J]. Materials Journal, 2000, 97(4): 486-492.
[16]LE H T, LUDWIG H M. Alkali silica reactivity of rice husk ash in cement paste[J]. Construction and Building Materials, 2020, 243:118-145.
[17]丁建彤, 白银, 蔡跃波. 基于碱硅反应抑制效果的粉煤灰品质评价指标[J]. 建筑材料学报, 2009, 12(2): 239-243,252.
DING Jiantong, BAI Yin, CAI Yuebo. Evaluation of fly ash quality based on lts effectiveness against alkalisilica reaction[J]. Journal of Building Materials, 2009, 12(2): 239-243,252.
[18]马嘉琛, 黄鑫, 仵江涛, 等. 稻壳灰粒径对水泥砂浆性能的影响[J]. 硅酸盐通报, 2019, 38(12): 3878-3883,3904.
MA Jiashen, HUANG Xin, WU Jiangtao, et al. Effect of rice husk ash particle size on the properties of cement mortar[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3878-3883,3904.
[19]王威, 刘连新, 赵宣. 粉煤灰掺量对集料碱硅酸反应的试验研究[J]. 混凝土, 2019(3):74-77.
WANG Wei, LIU Lianxin, ZHAO Xuan. Experimental study on inhibition of fly ash alkali aggregate reaction[J]. Concrete, 2019(3): 74-77.
[20]杨冬鹏. 粉煤灰对微膨胀碱活性骨料混凝土的影响[J]. 金属矿山, 2016(3): 180-184.
YANG Dongpeng. Effects of flyash on micro expansion concrete with alkali active aggregate[J]. Metal Mine, 2016(3): 180-184.
[21]胡明玉, 陈露璐, 郑江, 等. 粉煤灰和抛光渣抑制碱硅酸反应及其机理研究[J]. 建筑材料学报, 2020, 23(4): 739-747.
HU Mingyu, CHEN Lulu, ZHENG Jiang, et al. Mechanism of fly ash and ceramic polishing powder on inhibition alkali silica reaction[J]. Journal of Building Materials, 2020, 23(4): 739-747.
[22]龚晓强, 刘杰胜, 邢珊珊, 等. 稻壳灰水泥砂浆的耐久性研究[J]. 武汉轻工大学学报, 2018, 37(3): 64-69.
GONG Xiaoqiang, LIU Jiesheng, XIN Shanshan, et al. The study of the durability of the rice husk ash cement mortar[J]. Journal of Wuhan Polytechnic University, 2018, 37(3): 64-69.
[23]SINGH B. Rice husk ash[J]. Waste & Supplementary Cementitious Materials in Concrete, 2018: 417-460.
[24]MULTON S, SELLIER A, CYR M. Chemo-mechanical modeling for prediction of alkali silica reaction (ASR) expansion[J]. Cement & Concrete Research, 2009, 39(6): 490-500.
[25]GLASSER F P, MARR J. The alkali binding potential of OPC and blended cements[J]. Cement, 1985, 82:85-94.

备注/Memo

备注/Memo:
收稿日期:2022-09-21修回日期:2023-02-03
基金项目:四川省重点研发计划项目(2023YFQ0047)
第一作者:刘文丰(1998—),男,硕士生,主要研究方向为混凝土固废材料.E-mail:452503441@qq.com
通信作者:李碧雄(1970—),女,博士,博导,主要从事固废建材资源化、工程结构物理脆弱性研究等.E-mail:libix@126.com
更新日期/Last Update: 2024-04-08