基于支持向量机的钢结构隐性损伤磁记忆识别研究

(西安建筑科技大学 土木工程学院,陕西 西安 710055)

金属磁记忆; 隐性损伤; 支持向量机; 损伤识别; 建筑钢结构

Metal magnetic memory identification on steel structure implicit damage based on support vector machine
SU Sanqing,WEI Luxi,WANG Wei,HE Yang

(School of Civil Engineering, Xi'an Univ. of Arch. &Tech. Xi'an 710055, China)

Metal magnetic memory; implicit damage; support vector machine; damage identification; steel structure

DOI: 10.15986/j.1006-7930.2019.01.001

备注

为了解决应用金属磁记忆技术判定结构初期损伤状态的问题,从建筑钢板件的三点受弯试验入手,通过研究试验结果的磁记忆曲线规律,并提取四维磁记忆特征向量,结合支持向量机的方法建立了一个判定焊缝损伤状态的算法.结果表明:磁记忆检测技术不仅适用于建筑钢结构,而且可以利用支持向量机小样本的优势将焊缝损伤在应力集中、隐性损伤、显性损伤三种类别中区分出来,在一定程度上解决了如何识别钢结构隐性损伤的难题,并为磁记忆评判损伤量化提供了一种方法.

It is difficult for the metal magnetic memory(MMM)technology to test the initial weld damage state and category in the detection of building steel structure.To solve the problem, the research started from the three point bending test specimens of building steel structure. By analyzing the regular pattern of the magnetic memory curve and extracting the four-dimensional magnetic memory parameter, an algorithm of determining weld damage categories combined with support vector machine(SVM)method is established. Results show that the metal magnetic memory technology is not only suitable for building steel structure, but also capable of combining with the advantage of support vector machine in small sample to distinguish the category of weld damage from stress concentration, implicit damage and visible damage. The research solves the decision problem of steel structure implicit damage to a certain extent, and provides a method for quantitative study of magnetic memory.