基于Bayes-Bootstrap法确定土力学参数及可靠性分析

(1.昆明理工大学建筑工程学院,云南 昆明 650500; 2.中铁三局集团广州公司,广东 广州 510000)

岩土参数; Bayes大样本法; 改进Bayes-Bootstrap法; 最小样本量; 基坑开挖

Determination of soil mechanical parameters by Bayes-Bootstrap method and reliability analysis of foundation pit excavation
WEI Deyong1,RUAN Yongfen1,MENG Tao2,LIU Gaolin1,WANG Yujie1

(1.Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China; 2.Guangzhou Company of China Railway Third Bureau Group, Guangzhou 510000, China)

geotechnical parameters; Bayes large sample method; improved Bayes-Bootstrap method; minimum sample siz; foundation pit excavation

DOI: 10.15986/j.1006-7930.2021.05.013

备注

岩土参数的可靠取值是工程设计施工的基础,但要获得岩土参数准确信息需要花费巨大的成本.Bayes法能将样本及先验两种信息充分利用起来,推导后验分布,对参数预测取得很好的成效.但通常勘察的样本数据量较小,如果把所勘察到的样本量加以修正调整后作为先验信息,再引入基于插值法改进的Bayes-Bootstrap法对勘察的样本量进行扩大作为样本信息,结合Bayes大样本方法和Fisher信息量就可得到岩土力学参数的后验分布和某地层岩土参数当勘察样本量趋于无穷时的参数收敛值,并以该值作为能准确代表地层信息的代表值.研究发现:当样本量增大的同时,岩土参数的可靠收敛值逐渐向后验均值靠近,而后验均值一定程度上又与样本均值和样本量有关系,在得出各地层参数收敛取值之后反过来寻找参数准确取值时所需的最小样本量,并以一基坑工程开挖过程为例,通过实测监测数据和有限元模拟数据综合对比,验证了Bayes-Bootstrap法的所确定参数的可靠性.
The accurate value of geotechnical parameters is the basis of engineering design, but it costs a lot to obtain accurate information of geotechnical parameters. Bayes method can make full use of the sample and the prior information, deduce the posterior distribution, and achieve good results in parameter prediction. However, the amount of survey sample data is usually small. If the surveyed sample size is modified and adjusted as prior information, and then the improved Bayes-Bootstrap method based on interpolation is introduced to expand the survey sample size as the sample information, the Bayes large sample method and Fisher information amount can be used to obtain the posterior distribution of geomechanical parameters(in the state of solid fastness)and the parameter convergence value of the geotechnical parameters of a stratum when the sample size of the survey approaches infinity, and the value is used as a representative value that can accurately represent the stratum information. It is found that when the sample size increases, the reliable convergence value of geotechnical parameters gradually approaches the posterior mean value, and the posterior mean value is related to the sample mean value and sample size to a certain extent. After obtaining the convergence value of parameters in each layer, the minimum sample size required for accurate parameter value is found in turn. Taking the excavation process of a foundation pit as an example, the reliability of the parameters determined by the Bayes-Bootstrap method is verified by the comprehensive comparison between the measured monitoring data and the finite element simulation data.