[1]胡以松,王晓昌,孙琪媛,等.MBR中污泥的内源消化性能及EPS转化特征解析[J].西安建筑科技大学学报(自然科学版),2017,49(03):437-442.[doi:10.15986/j.1006-7930.2017.03.020]
 HU Yisong,WANG Xiaochang,SUN Qiyuan,et al.Variation characteristics of EPS and endogenous digestion performance of surplus sludge from MBR process[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(03):437-442.[doi:10.15986/j.1006-7930.2017.03.020]
点击复制

MBR中污泥的内源消化性能及EPS转化特征解析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
49
期数:
2017年03期
页码:
437-442
栏目:
出版日期:
2017-06-30

文章信息/Info

Title:
Variation characteristics of EPS and endogenous digestion performance of surplus sludge from MBR process
文章编号:
1006-7930(2017)03-0437-06
作者:
胡以松王晓昌孙琪媛杨媛
(西安建筑科技大学环境与市政工程学院,陕西 西安 710055)
Author(s):
HU Yisong WANG Xiaochang SUN Qiyuan YANG yuan
(School of Environmental and Municipal Engineering, Xi′an Univ of Arch & Tech, Xi′an 710055, China)
关键词:
膜生物反应器胞外聚合物三维荧光光谱污泥消化分子量分布
Keywords:
membrane bioreactor (MBR) extracellular polymeric substances (EPS) excitation-emission matrix (EEM) fluorescence spectroscopy sludge digestion molecular weight distribution
分类号:
x705
DOI:
10.15986/j.1006-7930.2017.03.020
文献标志码:
A
摘要:
膜生物反应器(MBR)具有污泥产量少等众多优点,同时也存在着污泥沉降性能及脱水性能差、剩余污泥难于处理的问题. 为此,采用2种生物技术(好氧消化和好氧/缺氧消化)处理MBR工艺剩余污泥,研究污泥的内源消化性能及胞外聚合物(EPS)的转化特征. 结果表明:在常温条件下,好氧/缺氧消化20 d时MLVSS降解率可达到50%,比好氧速率(SOUR)降低到1.5 mgO2/gMLVSS·h以下,完全能够满足污泥稳定处理的要求,同时比好氧消化节约曝气能耗. EPS的组分化学分析发现污泥消化后EPS中蛋白质、多糖和DNA的含量明显增加,表明消化过程中活性污泥的裂解导致胞内物质的释放,促进了EPS含量的增加与转化. 同时,红外光谱、三维荧光光谱及凝胶渗透色谱的分析结果认为,溶解性胞外聚合物(SEPS)与结合性胞外聚合物(BEPS)均以蛋白质、多糖、富里酸和腐植酸等组成,随着污泥的消化,BEPS增加且逐渐转化为SEPS,并导致类富里酸、类腐植酸等难降解有机物的积累和类蛋白质的降解;污泥消化前后SEPS分子量分布变化明显,呈现分子量减小的趋势,而BEPS分子量分布范围变化不大,主要表现为有机物浓度的显著增加.
Abstract:
MBRs show many advantages over conventional activated sludge system, including less excess sludge production, but also face some problems, such as hard to dispose of the surplus sludge due to its poor settling and dewatering ability. With this in mind, two sludge treatment technologies, namely aerobic digestion reactor and aerobic/anoxic intermittent digestion reactor were applied for the digestion of sludge from the MBR system to investigate the performance of the biological digestion processes and EPS variation characteristics during batch tests. The results indicated MLVSS removal efficiency could reach 50% and SOUR (specific oxygen utilization rate) decreased to below 1.5 mg/g.h after 20 days′ aerobic/anoxic digestion, which meant that the aerobic/anoxic digestion could meet the requirement of sludge stabilization and save more energy cost compared to aerobic digestion. Through chemical analysis of EPS components content, it was found that the content of proteins, polysaccharides and DNA showed significant increase, indicating large amount of biomass decay and the release of cellular substances after sludge digestion. The infrared spectroscopy (IR), three dimensional excitation-emission matrix (EEM) fluorescence spectroscopy and gel permeate chromatography (GPC) were used to characterize EPS. SEPS and BEPS both consisted of proteins, polysaccharides, fulvic acid and humic acid. With the digestion of sludge and cell lysis, BEPS increased and transformed to SEPS, which induced the accumulation of fulvic acid and humic acid and the degradation of proteins. After digestion, the change of molecular weight distribution of SEPS was more obviously than BEPS, and the molecular weight of SEPS showed a decrease tendency. Key words:

参考文献/References:

[1]LE-CLECH P, CHEN V, FANE A G T. Fouling in membrane bioreactors used in wastewater treatment [J]. Journal of Membrane Science, 2006, 284: 17-53. [2]WANG Z W, WU Z C, YU G P, et al. Relationship between sludge characteristics and membrane flux determination in submerged membrane bioreactors [J]. Journal of Membrane Science, 2006, 284: 87-94. [3]DAIGGE G T, BAILEY E. Improving aerobic digestion by prethickening, staged operation and aerobic-anoxic operation: four full-scale demonstrations[J]. Water Environment Research, 2000, 72(3): 260-270. [4]IBRAHIM A G, MOHAMED F H, Mohamed A E. Nitrogen-transformations during aerobic/anoxic sludge digestion[J]. Bioresource technology, 2002, 85(2): 147-152. [5]沈耀良. 污泥好氧消化处理工艺研究[J]. 苏州城建环保学院学报, 1994, 7(1): 55-64. SHEN Yaoliang. Aerobic digestion process of waste activated sludge[J]. Journal of Suzhou Institute of Urban Construction and Environmental Protection, 1994, 7(1): 55-64. [6]尹军, 刘韬, 宋显东. 污泥好氧消化处理的若干问题探讨[J]. 中国给水排水, 2001, 17(8): 23-26. YIN Jun, LIU Tao, SONG Xiandong. Discussion on several problem during sludge aerobic digestion[J]. Chinese Water & Wastewater, 2001, 17(8): 23-26. [7]BERNARD S, GRAY N F. Aerobic digestion of pharmaceutical and domestic wastewater sludges at ambient temperature [J]. Water Research, 2000, 34(3): 725-734. [8]WARNER P C, EKAMA G A, MARAIS G V R. Comparison of aerobic and anoxic-aerobic digestion of waste activated sludge [J]. Water Science & Technology, 1985, 17(8): 1475-1478. [9]国家环保局. 水和废水监测分析方法[M]. (第4版)北京:中国环境科学出版社, 2002. Chinese NEPA. Water and Wastewater Monitoring Methods[M]. 4rd ed. Beijing:Chinese Environmental Science Publishing House, 2002. [10]COMTE S, GUIBAUD G, BAUDU M. Effect of extraction method on EPS from activated sludge: An HPSEC investigation [J]. Journal of Hazardous Material, 2007, 140: 129-137. [11]DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28: 350-356. [12]HARTREE E F. Determination of protein: a modification of the Lowry method that gives linear photometric response [J]. Analytical Biochemistry, 1972, 48 (2): 422-427. [13]LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge [J]. Water Research, 2007, 41(5): 1022-1030. [14]PARK C, ABU-ORF M M, NOVAK J T. The digestibility of waste activated sludges [J]. Water Environment Research, 2006, 78: 59-68. [15]张艳萍, 彭永臻. 好氧/缺氧消化降解污泥特征分析[J]. 环境工程学报,2009,3(4): 673-676. ZHANG Yanping, PENG Yongzhen. Degradation characters of aerobic /anoxic sludge digestion [J]. Chinese Journal of Environmental Engineering, 2009, 3(4): 673-676. [16]MARUYAMA T, KATOH S, NAKAJIMA M, et al. FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes [J]. Journal of Membrane Science, 2001, 192: 201-207. [17]STEVENSON F J, GOH K M. Infrared spectra of humic acids and related substances [J]. Geochimica et Cosmochimica Acta, 1971, 35: 471-483. [18]CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37 (24): 5701-5710. [19]LASPIDOU C S, RITTMANN B E. A unified theory for extracellular polymeric substances soluble microbial products, and active and inert biomass [J]. Water Research, 2002, 36: 2711-2720.

相似文献/References:

[1]胡以松,王晓昌.EPS分析方法及其膜污染特性研究进展[J].西安建筑科技大学学报(自然科学版),2013,45(02):245.[doi:10.15986/j.1006-7930.2013.02.015]
 HU Yi-song,WANG Xiao-chang.Research progress on analytical methods and membrane fouling properties of EPS[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(03):245.[doi:10.15986/j.1006-7930.2013.02.015]
[2]王 怡1,2,郑淑健1,等.环境工程中胞外聚合物的研究现状及进展[J].西安建筑科技大学学报(自然科学版),2011,43(06):854.[doi:DOI:10.15986/j.1006-7930.2011.06.014]
 ,,et al.A review on extracellular polymeric substancein environmental engineering[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(03):854.[doi:DOI:10.15986/j.1006-7930.2011.06.014]

备注/Memo

备注/Memo:
收稿日期:2016-05-14 修改稿日期:2017-05-20 基金项目:国家自然科学基金资助项目(51508450);中国博士后科学基金资助项目(2015M582760XB);水体污染控制与治理科技重大专项基金资助(2013ZX07310-001);陕西省污水处理与资源化科技创新团队基金资助项目(2013KCT-13) 作者简介:胡以松(1986-),男,博士,主要从事MBR污水处理技术方向的研究.E-mail: jeffsion414@163.com
更新日期/Last Update: 2017-08-27