[1]李 伟,李博凡,李毅平,等.内配钢骨及加劲肋的圆钢管混凝土构件轴拉性能试验研究[J].西安建筑科技大学学报(自然科学版),2021,53(05):682-691+745.[doi:10.15986/j.1006-7930.2021.05.010 ]
 LI Wei,LI Bofan,LI Yiping,et al.Experimental study on axial tensile behavior of circular concrete-filled steel tubular members with angles and stiffeners[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(05):682-691+745.[doi:10.15986/j.1006-7930.2021.05.010 ]
点击复制

内配钢骨及加劲肋的圆钢管混凝土构件轴拉性能试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年05期
页码:
682-691+745
栏目:
出版日期:
2021-10-25

文章信息/Info

Title:
Experimental study on axial tensile behavior of circular concrete-filled steel tubular members with angles and stiffeners
文章编号:
1006-7930(2021)05-0682-10
作者:
李 伟1李博凡2李毅平1王晓栋2刘 钊1王先铁2
(1.国网甘肃省电力公司 建设分公司,甘肃 兰州,730050; 2.西安建筑科技大学 土木工程学院,陕西 西安,710055)
Author(s):
LI Wei1 LI Bofan2 LI Yiping1 WANG Xiaodong2 LIU Zhao1 WANG Xiantie2
(1.State Grid Gansu Power Construction Company, Lanzhou 730050, China; 2.School of Civil Engineering, Xi'an Univ.of Arch.& Tech., Xi'an 710055, China)
关键词:
钢管混凝土 内配钢骨 加劲肋 轴心受拉试验 承载力 刚度
Keywords:
CFST latticed angles stiffeners axial tension test bearing capacity rigidity
分类号:
TU317.1
DOI:
10.15986/j.1006-7930.2021.05.010
文献标志码:
A
摘要:
为研究内配钢骨及加劲肋的圆钢管混凝土构件轴心受拉性能,对7个钢管混凝土试件进行了轴心受拉试验,探究不同内部构造形式对构件受拉承载力和刚度的影响.试验结果表明:内配钢骨和纵向加劲肋能有效地参与受拉作用,提高构件的受拉承载力和刚度,当试件达到极限受拉承载力时,内配钢骨亦能达到受拉屈服.与普通钢管混凝土试件相比,内配钢骨、纵向加劲肋试件的极限受拉承载力分别提高13.60%和7.82%; 同时内配钢骨和纵向加劲肋试件的承载力提高22.94%; 内配环肋对试件的极限受拉承载力影响很小,但环肋能更有效地将外荷载传递给混凝土,使混凝土均匀受力.利用有限元软件ABAQUS对试验试件进行数值模拟分析,模拟结果与试验结果吻合较好.现有规范对钢管混凝土轴心受拉构件承载力的计算偏于安全,韩林海提出的钢管混凝土轴心受拉刚度公式计算结果与试验结果吻合较好.
Abstract:
In order to study the axial tensile behavior of circular concrete-filled steel tubular(CFST)members with angles and stiffeners, the axial tension test was carried out on seven specimens to explore the effects of different internal structural forms on the tensile bearing capacity and rigidity of the members. The test results show that the internal angles and longitudinal stiffeners can effectively participate in the tensile action and improve the tensile bearing capacity and rigidity of the test specimens. When the specimens reach the ultimate tensile capacity, the internal angles can reach the tensile yield. Compared with common CFST specimen, the ultimate tensile capacity of the specimens with angles and longitudinal stiffeners is increased by 13.60% and 7.82% respectively, and the bearing capacity of the specimens with internal angles and stiffeners is increased by 22.94%. The internal ring stiffeners has little effect on the ultimate tensile capacity of the specimen, but it can transfer the external load to the inner concrete more effectively, so that the concrete is evenly tensioned. The finite element software ABAQUS is used for numerical simulation analysis of the test specimen, and the simulation results are in good agreement with the test results. The results show that the calculation of the bearing capacity of the test specimen based on the existing codes tends to be conservative, while the calculation results of the axial tensile stiffness formula proposed by Linhai Han are in good agreement with the test results.

参考文献/References:

[1] 蔡绍怀. 我国钢管混凝土结构技术的最新进展[J]. 土木工程学报, 1999, 32(4): 16-26.
CAI Shaohuai. Recent development of steel tube-confined concrete structures in china[J]. China Civil Engineering Journal, 1999, 32(4): 16-26.
[2]HAN Linhai, LI. Wei, Bjorhovde Reidar. Developments and advanced applications of concrete-filled steel tubular(CFST)structures members[J].Journal of Constructional Steel Research. 2014, 100: 211-228.
[3]余志武,丁发兴,林松. 钢管高性能混凝土短柱受力性能研究[J]. 建筑结构学报, 2002, 23(2): 41-47.
YU Zhiwu, DING Faxing, LIN Song. Researches on behavior of high-performance concrete filled tubular steel short colun[J]. Journal of Building Structures, 2002, 23(2): 41-47.
[4]张素梅,王玉银. 圆钢管高强混凝土轴压短柱的破坏模式[J]. 土木工程学报, 2004, 37(9): 1-10.
ZHANG Sumei, WANG Yuyin. Failure modes of short columns of high-strength concrete-filled steel tubes[J]. China Civil Engineering Journal, 2004, 37(9): 1-10.
[5]何益斌,肖阿林,郭健, 等. 钢骨-钢管自密实高强混凝土偏压柱力学性能试验研究[J]. 建筑结构学报, 2010, 31(4): 102-109.
HE Yibin, XIAO Alin, GUO Jian, et al. Experimental study on behavior of eccentrically loaded steel-reinforced self-compacting high-strength concrete filled steel tubular colums[J]. Journal of Building Structures, 2010, 31(4): 102-109.
[6]BURAK Evirgen, AHMET Tuncan, KIVANC Taskin. Structural behavior of concrete filled steel tubular sections(CFT/CFST)under axial compression[J]. Thin-Walled Structures, 2014, 80: 46-56.
[7]潘友光, 钟善桐. 钢管混凝土轴心受拉本构关系[J]. 工业建筑, 1990,20(4): 30-37.
PAN Youguang, ZHONG Shantong. The axis tensile constitutive relationship of concrete filled steel tubes[J]. Industrial Construction, 1990,20(4): 30-37.
[8]张素梅.钢管混凝土构件在轴心拉力作用下的性能[C]∥中国钢协钢-混凝土组合结构协会第三次年会论文集.哈尔滨:中国钢协,1991, 24: 32-38.
ZHANG Sumei. The behavior of concrete-filled tubular members subjected to axial tension[C]//The Third annual meeting of China Steel Construction Society Association for Steel-Concrete Composite Structures.Haerbing:China Steel Construction Society, 1991, 24: 32-38.
[9]蔡文哲, 史庆轩, 王斌. 钢管混凝土构件轴向受拉机理和承载力研究[J]. 地震工程与工程振动, 2018, 38(4): 124-131.
CAI Wenzhe, SHI Qingxuan, WANG Bin. Research on the axial tensile mechanism and bearing capacity of concrete filled steel tube members[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(4): 124-131.
[10]HAN Linhai, HE Shanhu, LIAO Feiyu. Performance and calculations of concrete filled steel tubes(CFST)under axial tension[J].Journal of Constructional Steel Research. 2011,67(11): 1699-1709.
[11]LI Wei, HAN Linhai, Tak-Ming Chan. Performance of concrete-filled steel tubes subjected to eccentric tension[J].Engineering Structures, 2015, 141(12): 04015948.
[12]ZHOU Meng, XU Liyan, TAO Muxuan, et al. Experimental study on confining-strengthening, confining-stiffening, and fractal cracking of circular concrete filled steel tubes under axial tension[J]. Engineering Structures, 2017, 133: 186-199.
[13]陈驹,王军,金伟良. 配筋钢管混凝土柱轴拉及偏拉性能试验研究[J].建筑结构学报,2017,38(S1):272-277.
CHEN Ju, WANG Jun, JIN Weiliang. Experimental investigation on concrete-filled steel tubes with reinforcing bars under axial and eccentric tension[J]. Journal of Building Structures, 2017, 38(S1): 272-277.
[14]王军,董建尧,赵建,等. 内配钢筋钢管混凝土构件轴心受拉性能研究[J]. 钢结构, 2018, 33(7): 33-39.
WANG Jun, DONG Jianyao, ZHAO Jian, et al. Experiment research on concrete-filled steel tubes with reinforcing bars under axial tension[J]. Steel Construction, 2018, 33(7): 33-39.
[15]XU Fei, WANG Jun, CHEN Ju, etal. Load-transfer mechanism in angle-encased CFST members under axial tension[J]. Engineering Structures, 2019, 178: 162-178.
[16]韩林海.钢管混凝土结构:理论与实践[M].第 2 版.北京:科学出版社,2007.
HAN Linhai. Concrete filled steel tubular structures:Theory and practice[M]. 2nd ed. Beijing: China Science Publishing, 2007.
[17]Dassault Systemes Simulia Corp. ABAQUS Analysis User's Manual Version 6.14[M]. USA, RI: Providence, 2014.
[18]WIERZBICKI Tomasz, BAO Yingbin, LEE Young Woong, et al. Calibration and evaluation of seven fracture models[J]. International Journal of Mechanical Sciences, 2005, 47(4): 719-743.
[19] WIERZBICKI T, XUE L. On the effect of the third invariant of the stress deviator on ductile fracture[R]. Cambridge: MIT Impact and Crashworthiness Lab, 2005.
[20]XUE L. Damage accumulation and fracture initiation in uncracked ductile solids under triaxial loading-Part I: Pressure sensitivity and Lode dependence[R]. Cambridge: MIT Impact and Crashworthiness Lab, 2005.
[21]HL Yu, DY Jeong. Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens[J]. Theoretical and Applied Fracture Mechanics, 2010, 54(1): 54-62.
[22]XU Fei, CHEN Ju, TAK-MING Chan. Numerical investigation on compressive performance of CFST columns with encased built-up lattice-angles[J]. Journal of Constructional Steel Research, 2017, 137: 242-253.
[23]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M]. 北京: 清华大学出版社,1993.
SHEN Jumin, WANG Chuanzhi, JIANG Jianjing. Reinforced concrete finite element and limit analysis of slab shell[M].Beijing:Tsinghua University Press, 1993.
[24]CEB-FIP Model Code for Concrete Structure MC1990[M]. Lausame: Comite Euro-International du Beton(CEB), 1990.
[25]刘威. 钢管混凝土局部受压时的工作机理研究[D]. 福州:福州大学, 2005.
LIU Wei. Research on mechanism of concrete-filled steel tubes subjected to local compression[D]. Fuzhou: Fuzhou University, 2005.
[26]CECS.特殊钢管混凝土构件设计规程:CECS 408-2015[S]. 北京:中国计划出版社, 2015.
CECS.Design specification for specified concrete filled steel tubular members:CECS 408-2015[S]. Beijing: China Planning Press, 2015.
[27]ANSI/AISC.Specification for Structural Steel Buildings:ANSI/AISC 360-16[S]. Chicago: American Institute of Steel Construction, 2016.
[28]ECS. Eurocode4 design of composite steel and concrete structures[S]. Brussels: European Committee for Standardization, 2004.
[29]哈尔滨工业大学.钢管混凝土结构技术规范:GB 50936-2014[S]. 北京: 中国建筑工业出版社, 2014.
Harbin Institute of Technology.Technical code for concrete-filled steel tubular structures:GB 50936-2014[S]. Beijing: China Architecture & Building Press, 2014.

相似文献/References:

[1]李自林,薛 江,张锴锋.基于结构参数的新型组合桥梁结构受力性能研究[J].西安建筑科技大学学报(自然科学版),2013,45(04):463.[doi:10.15986/j.1006-7930.2013.04.002]
 LI Zi-lin,XUE Jiang,ZHANG Kai-feng.Study on the mechanical performance for a new-type composite bridge structure base on structure parameters[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(05):463.[doi:10.15986/j.1006-7930.2013.04.002]
[2]王 飞,何 平,罗永峰,等.江阴魔方时代广场复杂梁柱节点承载性能试验研究[J].西安建筑科技大学学报(自然科学版),2011,43(03):356.[doi:DOI :10.15986/j .1006-7930.2011.03.019]
 WANG Fei,HE P ing,LUO Yong-feng,et al.Research on the mechanical performance of complicated beam-column joint In Jiangyin Magic Cube Time Square[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(05):356.[doi:DOI :10.15986/j .1006-7930.2011.03.019]
[3]王宗让,苏明周,董振平.改进型钢管混凝土柱单腹板肩梁有限元分析及设计方法[J].西安建筑科技大学学报(自然科学版),2015,47(05):666.[doi:DOI:10.15986/j.1006-7930.2015.05.010]
 WANG Zongrang,SU Mingzhou,DONG ZhenPin.Finite element analysis and design method for the improved single-web shoulder-beam member with concrete-filled steel tube column WANG Zongrang1, SU Mingzhou2, DONG ZhenPin 2[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(05):666.[doi:DOI:10.15986/j.1006-7930.2015.05.010]
[4]史庆轩,王 峰,王 朋,等.斜交网格X型节点轴压承载力性能研究[J].西安建筑科技大学学报(自然科学版),2017,49(02):155.[doi:10.15986/j.1003-7930.2017.02.001]
 SHI Qingxuan,WANG Feng,WANG Peng,et al.Investigation of axial bearing capacity of X-nodes in diagrid structures[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(05):155.[doi:10.15986/j.1003-7930.2017.02.001]
[5]程高,刘永健,张宁,等.设纵肋CFRST轴压柱屈曲性能解析分析与加劲肋设计[J].西安建筑科技大学学报(自然科学版),2018,50(04):513.[doi:10.15986/j.1006-7930.2018.04.008]
 CHENG Gao,LIU Yongjian,ZAHNG Ning,et al.Local buckling of CFRST with longitudinal stiffener under axial compression and design of longitudinal stiffener[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(05):513.[doi:10.15986/j.1006-7930.2018.04.008]

备注/Memo

备注/Memo:
收稿日期:2021-01-27修改稿日期:2021-10-18
基金项目:国家自然科学基金项目(51678474)
第一作者:李伟(1986-),男,硕士,工程师,从事输变电工程设计研究.E-mail: 304550629@qq.com
通信作者:王先铁(1979-),男,博士,教授,从事钢结构与钢管混凝土结构研究.E-mail: wangxiantie@163.com
更新日期/Last Update: 2021-10-25