[1]胡 昂,郭仲薇,戴维维,等.基于差异层级大数据的地铁站域街道空间品质多维评价——以成都市中心城区为例[J].西安建筑科技大学学报(自然科学版),2020,52(05):738-751.[doi:10.15986j.1006-7930.2020.05.017 ]
 HU Ang,GUO Zhongwei,DAI Weiwei,et al.Multi-dimensional evaluation of street space quality in metro station catchment areas based on big data at different hierarchy——take downtown Chengdu as an example[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(05):738-751.[doi:10.15986j.1006-7930.2020.05.017 ]
点击复制

基于差异层级大数据的地铁站域街道空间品质多维评价——以成都市中心城区为例()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
52
期数:
2020年05期
页码:
738-751
栏目:
出版日期:
2020-10-28

文章信息/Info

Title:
Multi-dimensional evaluation of street space quality in metro station catchment areas based on big data at different hierarchy——take downtown Chengdu as an example
文章编号:
1006-7930(2020)05-0740-12
作者:
胡 昂1郭仲薇1戴维维1牛韶斐1李 想2
(1. 四川大学 建筑与环境学院,四川 成都 610064; 2. 四川大学 经济学院,四川 成都 610064)
Author(s):
HU Ang1 GUO Zhongwei1 DAI Weiwei1 NIU Shaofei1 LI Xiang2
(1. school of Architecture & Environment, Sichuan University, Chengdu 610064, China;
关键词:
差异层级 大数据 地铁站域 街道空间品质 多维评价
Keywords:
hierarchy of differences big data metro station catchment area street space quality multi-dimensional evaluation
分类号:
TU984.2
DOI:
10.15986j.1006-7930.2020.05.017
文献标志码:
A
摘要:
高质量的站域空间设计需要科学的测度方法为支撑.为了实现地铁站域街道空间品质的大规模测度,依托街道网络、POI、街景图片等多源大数据的巨量规模和高精度优势,构建了以连通性、便利性与舒适性为核心的多维评价体系.同时以成都市中心城区的73个地铁站域为例进行实证研究,发现中心城区地铁站域内街道便利性与舒适性普遍较好,连通性较差.以站域为单位测度各维度水平,发现站域各维度评价结果在空间和数量分布特征差异显著.同时针对不同层级站点,从不同圈层尺度上进行了差异化研究,发现各层级站域核心区的连通性与便利性普遍高于辐射影响区,舒适性则相反.结论为成都地铁场站一体化城市设计及TOD圈层规划提供了定量参照和科学支撑.
Abstract:
High-quality spatial design of the catchment area needs the support of scientific measurement methods. With the goal of realizing large-scale measurement of street space quality in the metro station catchment area, a multi-dimensional evaluation system with connectivity, convenience and comfort as the core is built, relying on the huge scale and high precision of multisource big data such as street network, POI, street view pictures, etc. Meanwhile, an empirical study is conducted on the 73 catchment areas in downtown Chengdu, and it is found that the convenience and comfort of the streets in the catchment areas in downtown Chengdu are generally good, but the connectivity is poor. It is found that the spatial and quantitative distribution characteristics of catchment areas differ significantly in each dimension. Also for each hierarchy of stations, differentiated research from different circle scales. It is found that the core area have higher connectivity and convenience than the radiation-affected area, while the opposite is true for comfort. The conclusion provides quantitative reference and scientific support for the integrated urban design of metro stations and TOD circle planning in Chengdu.

参考文献/References:

[1] 卢济威,陈泳. 推进地铁站地区体系化:上海市轨道交通10号线四川北路站地区城市设计[J]. 建筑学报, 2008(1): 29-33. LU Jiwei, CHEN Yong. Promoting the systematization of subway station area: urban design of sichuan north road station of shanghai rail transit line 10[J]. Architectural Journal, 2008(1):29-33.
[2] 赫磊,束昱,王璇. 地铁车站及周边地上、地下空间城市设计探讨[J]. 地下空间与工程学报, 2006(S1): 1199-1203. HE Lei, SHU Yu, WANG Xuan. Investigation on urban design with integration of above-and-under ground space around subway station[J]. Chinese Journal of Underground Space and Engineering, 2006(S1):1199-1203.
[3] 龙瀛,唐婧娴. 城市街道空间品质大规模量化测度研究进展[J]. 城市规划, 2019,43(6): 107-114. LONG Ying, TANG Jingxian. Large-scale quantitative measurement of the quality of urban street space: the research progress [J]. City Planning Review, 2019,43(6):107-114.
[4] YU Bailang, LIU Hongxing, WU Jianping, et al. Automated derivation of urban building density information using airborne LiDAR data and object-based method[J]. Landscape and Urban Planning, 2010, 98(3/4): 210-219.
[5] ZHANG Fan, ZHOU Bolei, LIU Liu, et al. Measuring human perceptions of a large-scale urban region using machine learning[J]. Landscape and Urban Planning, 2018, 180: 148-160.
[6] 王德,卢银桃,朱玮等. 社区日常服务设施可步行性评价系统开发与应用[J]. 同济大学学报(自然科学版), 2015(12): 1815-1822. WANG De, LU Yintao, ZHU Wei, et al. Development and application of walkability evaluation system for community daily service facilities[J]. Journal of Tongji University(Natural Science), 2015(12):1815-1822.
[7] 巴蒂M,史密斯A H,陈宇琳. 城市设计中的可视化分析、智慧城市与大数据[J]. 城市设计, 2016(3): 6-15. BATTY M, SMITH A H, CHENYulin. Visual analytics, smart cities, and big data in urban design[J]. Urban Design, 2016(3):6-15.
[8] FRUIN J. Pedestrian: planning and design[M]. New York: Metropolitan Association of Urban Designers and Environmental Planners, 1971.
[9] CALTHORPE P. The next American metropolis: Ecology, community, and the American dream[M]. New York: Princeton Architectural Press, 1993, 24-25.
[10]WEY W M, CHIU Y H. Assessing the walkability of pedestrian environment under the transit-oriented development[J]. Habitat International, 2013, 38: 106-118.
[11]EWING R, CERVERO R. Travel and the built environment: A meta-analysis[J]. Journal of the American Planning Association, 2010, 76(3): 265-294.
[12]WEINSTEIN Agrawal A, SCHLOSSBERG M, IRVIN K. How far, by which route and why? a spatial analysis of pedestrian preference[J]. Journal of Urban Design, 2008, 13(1): 81-98.
[13]SCHLOSSBERG M, BROWN N. Comparing transit-oriented development sites by walkability indicators[J]. Transportation Research Record, 2004,1887: 34-42.
[14]杨俊宴,曹俊. 动·静·显·隐:大数据在城市设计中的四种应用模式[J].城市规划学刊,2017(4):39-46. YANG Junyan, CAO Jun. Dynamic, static, explicit and implicit: four application modes of big data in urban design[J]. Urban Planning Forum, 2017(4):39-46.
[15]赫磊,束昱,王璇. 地铁车站及周边地上、地下空间城市设计探讨[J]. 地下空间与工程学报, 2006(S1): 1199-1203. HE Lei, SHU Yu, WANG Xuan. Investigation on urban design with integration of above-and-under ground space around subway station[J]. Chinese Journal of Underground Space and Engineering, 2006(S1):1199-1203.
[16]段德罡,张凡. 土地利用优化视角下的城市轨道站点分类研究:以西安地铁2号线为例[J]. 城市规划, 2013,37(9): 39-45. DUAN Degang, ZHANG Fan. Study on classification of urban rail transit stations from the perspective of land use optimitimization: a case study on Xi'an Subway Line 2[J]. City Planning Review, 2013,37(9):39-45.
[17]CERVERO R, KOCKELMAN K. Travel demand and the 3Ds: density, diversity, and design[J]. Transportation Research Part D, 1997, 2(3): 199-219.
[18]蒋永穆,李想. 川渝黔经济一体化助推成渝地区双城经济圈建设研究[J/OL]. 西部论坛:1-14. http://kns.cnki.net/kcms/de tail/50.1200.C.20200701.112 1.002.html. JIANG Yongmu, LI Xiang. Research on the economic integration of Sichuan, Chongqing and Guizhou to boost the construction of Chengdu Chongqing economic circle[J/OL]. West Forum: 1-14. http://kns.cnki.net/kcms/detail/50.1200.C.20200 701.1121.002.html.
[19]SOHN K, SHIM H. Factors generating boardings at metro stations in the Seoul metropolitan area[J]. Cities, 2010,27(5), 358-368.
[20]古恒宇,孟鑫,沈体雁,等. 基于sDNA模型的路网形态对广州市住宅价格的影响研究[J]. 现代城市研究, 2018(6): 2-8. GU Hengyu, MENG Xin, SHEN Tiyan, et al. A study on the influrence of urban road network on the housing price in Guangzhou based on sDNA model [J]. Modern Urban Research, 2018(6):2-8.
[21]樊钧,唐皓明,叶宇. 街道慢行品质的多维度评价与导控策略:基于多源城市数据的整合分析[J]. 规划师, 2019,35(14): 5-11. FAN Jun, TANG Haoming, YE Yu. Multi dimensional evaluation and guidance and control strategy of street slow traffic quality[J]. Planners, 2019, 35(14): 5-11.
[22]HILLIER B, PENN A, BANISTER D, et al. Configurational modelling of urban movement network[J]. Environment and Planning B: Planning and Design, 1998, 25(1): 59-84.
[23]张灵珠,晴安蓝. 三维空间网络分析在高密度城市中心区步行系统中的应用:以香港中环地区为例[J]. 国际城市规划, 2019,34(1): 50-57. ZHANG Lingzhu, QING Anlan. Application of 3D spatial network analysis in pedestrian system of high density urban center: a case study of Central Hong Kong[J]. Urban Planning International, 2019, 34(1): 50-57.
[24]董世永,龙晨吟. 基于模糊综合评价的住区可步行性测度方法及发展策略研究:以重庆典型住区为例[J]. 西部人居环境学刊, 2015, 30(1): 106-112. DONG Shiyong, LONG Chenyin. Research on the measurement method and development strategy of residential walkability based on fuzzy comprehensive evaluation[J]. Journal of Human Settlements in West China, 2015, 30(1): 106-112.
[25]周钰. 街道界面形态规划控制之“贴线率”探讨[J]. 城市规划, 2016,40(8): 25-29,35. ZHOU Yu. Exploration on “build-to-line ratio” in urban planning control on street interface[J]. City Planning Review, 2016,40(8):25-29,35.
[26]方智果,宋昆,叶青. 芦原义信街道宽高比理论之再思考:基于“近人尺度”视角的街道空间研究[J]. 新建筑, 2014(5): 136-140. FANGZhiguo, SONG Kun, YE Qing. Reflection of Yoshinobu Ashihara's research about the proportion of street width to building height: A study of street space based on Human Scale[J]. New Architecture, 2014(5):136-140.
[27]刘泉. TOD地区规划圈层结构划分的影响要素[J]. 国际城市规划, 2017,32(5): 72-79. LIU Quan. Factors affecting circle structure of TOD concentric models [J]. Urban Planning International, 2017,32(5):72-79.

相似文献/References:

[1]张家瑜,袁 阳,周梦涵,等.基于POI的街道类型精细化识别和分布特征研究——以福州主城区为例[J].西安建筑科技大学学报(自然科学版),2022,54(03):406.[doi:10.15986/j.1006-7930.2022.03.011]
 ZHANG Jiayu,YUAN Yang,ZHOU Menghan,et al.Research on elaborate street type recognition and distribution characteristics based on POI data: A case study in the main urban area of Fuzhou[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(05):406.[doi:10.15986/j.1006-7930.2022.03.011]

备注/Memo

备注/Memo:
收稿日期:2020-05-28 修改稿日期:2020-09-04
基金项目:中央高校基本科研业务费项目(20826041C4133)
第一作者:胡 昂(1974-),男,教授,博士生导师,主要研究TOD模式开发与利用.E-mail: ang.hu6@scu.edu.cn 通信作者:戴维维(1996-),女,硕士生,主要研究人居环境与市政工程.E-mail: 13853795123@163.com

更新日期/Last Update: 1900-01-01